Supergenes in a Genetic Algorithm for Heterogeneous FPGA Placement

被引:0
|
作者
Jamieson, Peter [1 ]
Gharibian, Farnaz [2 ]
Shannon, Lesley [2 ]
机构
[1] Miami Univ, Dept Elect & Comp Engn, Oxford, OH 45056 USA
[2] Simon Fraser Univ, Sch Engn Sci, Burnaby, BC V5A 1S6, Canada
关键词
Genetic Algorithms; Supergene; FPGA; Placement; Granularity; FLOORPLAN DESIGN;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Supergenes are an addition to a genetic algorithm's genome that duplicate genes in the genome, represent local optimizations, and have the potential to be expressed overriding the duplicated gene. We introduce supergenes in a genetic algorithm for FPGA placement where a placement algorithm places a mix of fine-grain components and medium-grain components (where a medium-grain component is 2 to 10 times the size of a fine-grain component). This is the first placement algorithm, to our knowledge, that can deal with such a mix of components. Our results show that supergenes improve a placement metric (clock speed of the FPGA) by approximately 10%. We also show and explore mutation operators on supergenes, and we experimentally demonstrate that the expression of a supergene can be effectively controlled via a binary function for our placement problem.
引用
收藏
页码:253 / 260
页数:8
相关论文
共 50 条
  • [41] Genetic Algorithm for Boolean minimization in an FPGA cluster
    César Pedraza
    Javier Castillo
    José I. Martínez
    Pablo Huerta
    Jose L. Bosque
    Javier Cano
    The Journal of Supercomputing, 2011, 58 : 244 - 252
  • [42] The hardware implementation of a genetic algorithm model with FPGA
    Tu, L
    Zhu, MC
    Wang, JX
    2002 IEEE INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT), PROCEEDINGS, 2002, : 374 - 377
  • [43] FPGA Accelerated FPGA Placement
    Dhar, Shounak
    Singhal, Love
    Iyer, Mahesh A.
    Pan, David Z.
    2019 29TH INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2019, : 404 - 410
  • [44] A PIPELINED BASED FPGA IMPLEMENTATION OF A GENETIC ALGORITHM
    Thirer, Nonel
    ECTA 2011/FCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION THEORY AND APPLICATIONS AND INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION THEORY AND APPLICATIONS, 2011, : 343 - 345
  • [45] Genetic Algorithm for Boolean minimization in an FPGA cluster
    Pedraza, Cesar
    Castillo, Javier
    Martinez, Jose I.
    Huerta, Pablo
    Bosque, Jose L.
    Cano, Javier
    JOURNAL OF SUPERCOMPUTING, 2011, 58 (02): : 244 - 252
  • [46] Optimize TOD Placement using Genetic Algorithm
    Kim, NamHoon
    Sohn, Hong-Gyoo
    Jeon, Doe-Gyu
    Jang, Hyo-Seon
    2014 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS 2014), 2014, : 136 - 139
  • [47] Genetic Algorithm for Instrument Placement in Smart Grid
    Khiabani, Vahidhossein
    Erdem, Ergin
    Farahmand, Kambiz
    Nygard, Kendall
    2013 WORLD CONGRESS ON NATURE AND BIOLOGICALLY INSPIRED COMPUTING (NABIC), 2013, : 214 - 219
  • [48] A Hybrid Genetic Algorithm for Well Placement Optimization
    Chen, Jing
    Hao, Fang
    Li, Zhenhua
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, 2008, : 42 - 44
  • [49] CGARP: Chaos genetic algorithm-based relay node placement for multifaceted heterogeneous wireless sensor networks
    Banerjee, Partha Sarathi
    Mandal, Satyendra Nath
    De, Debashis
    Maiti, Biswajit
    INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING, 2022, 20 (4) : 689 - 704
  • [50] Partitioning and placement for multi-FPGA systems using genetic algorithms
    Dpto. Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, 28040 Madrid, Spain
    Conf. Proc. EUROMICRO, 1600, (204-211):