Quantized mixed tensor space and Schur-Weyl duality

被引:10
作者
Dipper, Richard [1 ]
Doty, Stephen [2 ]
Stoll, Friederike [1 ]
机构
[1] Univ Stuttgart, Inst Algebra & Zahlentheorie, D-70569 Stuttgart, Germany
[2] Loyola Univ, Dept Math & Stat, Chicago, IL 60660 USA
关键词
Schur-Weyl duality; walled Brauer algebra; mixed tensor space; rational q-Schur algebra; REPRESENTATIONS; ALGEBRAS;
D O I
10.2140/ant.2013.7.1121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with 1 and q an invertible element of R. The (specialized) quantum group U = U-q(gl(n)) over R of the general linear group acts on mixed tensor space V-circle times r circle times V*(circle times s), where V denotes the natural U-module R-n, r and s are nonnegative integers and V* is the dual U-module to V. The image of U in End(R)(V-circle times r circle times V*(circle times s)) is called the rational q-Schur algebra S-q (n; r, s). We construct a bideterminant basis of S-q(n; r, s). There is an action of a q-deformation B-r,s(n)(q) of the walled Brauer algebra on mixed tensor space centralizing the action of U. We show that End(Br,s) (n(q))(V-circle times r circle times V*(circle times s)) = S-q(n; r, s). By a previous result, the image of B-r,s(n) (q) in End(R)(V-circle times r circle times V*(circle times s)) is End(U)(V-circle times r circle times V*(circle times s)). Thus, a mixed tensor space as (U, B-r,s(n)(q))-bimodule satisfies Schur-Weyl duality.
引用
收藏
页码:1121 / 1146
页数:26
相关论文
共 19 条
[1]   TENSOR PRODUCT REPRESENTATIONS OF GENERAL LINEAR-GROUPS AND THEIR CONNECTIONS WITH BRAUER ALGEBRAS [J].
BENKART, G ;
CHAKRABARTI, M ;
HALVERSON, T ;
LEDUC, R ;
LEE, CY ;
STROOMER, J .
JOURNAL OF ALGEBRA, 1994, 166 (03) :529-567
[2]  
Brundan J., 2011, PREPRINT
[3]  
Dipper P., 2008, Represent. Theory, V12, P58
[4]  
DIPPER R, 1989, P LOND MATH SOC, V59, P23
[5]  
DIPPER R, 1991, P LOND MATH SOC, V63, P165
[6]  
Dipper R., 2012, PREPRINT
[7]   Commutation relations for arbitrary quantum minors [J].
Goodearl, Kenneth R. .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 228 (01) :63-102
[8]   q-Schur algebras as quotients of quantized enveloping algebras [J].
Green, RM .
JOURNAL OF ALGEBRA, 1996, 185 (03) :660-687
[9]  
Hong J., 2002, Introduction to Quantum Groups and Crystal Bases, V42
[10]   STANDARD BASIS THEOREM FOR QUANTUM LINEAR-GROUPS [J].
HUANG, RQ ;
ZHANG, JJ .
ADVANCES IN MATHEMATICS, 1993, 102 (02) :202-229