Geodesic spheres and non radial eigenfunctions on Damek-Ricci spaces

被引:5
作者
Camporesi, Roberto [1 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, I-10129 Turin, Italy
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2013年 / 24卷 / 02期
关键词
Homogeneous harmonic spaces; Jacobi functions; SPHERICAL PRINCIPAL SERIES; H-TYPE GROUPS; INTERTWINING-OPERATORS; QUADRATIC-FORMS;
D O I
10.1016/j.indag.2012.11.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S = NA be a Damek-Ricci space with its standard metric gamma S. Let C : S -> B be the Cayley transform from S onto the unit ball B in s. We compute the transported metric gamma(B) = C-1* (gamma(S)). By separating variables in geodesic polar coordinates, we then compute the non-radial M-invariant eigenfunctions of the Laplacian on S, where M is the group of automorphisuns of S preserving the inner product on s. The "radial" part of these eigenfunctions is given by (associated) Jacobi functions. The "angular" part is given by certain orthogonal polynomials in two variables studied by Koornwinder. (C) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:313 / 345
页数:33
相关论文
共 30 条
[1]  
Anker J-P., 1996, ANN SCUOLA NORM SUP, V23, P643
[2]   The Helgason Fourier transform on a class of nonsymmetric harmonic spaces [J].
Astengo, F ;
Camporesi, R ;
DiBlasio, B .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 55 (03) :405-424
[3]  
Astengo F., 1999, Colloq. Math, V80, P211, DOI DOI 10.4064/CM-80-2-211-233
[4]  
Astengo F., 2010, Ann. Math. Blaise Pascal, V17, P327, DOI [10.5802/ambp.286, DOI 10.5802/AMBP.286]
[5]  
BIQUARD O, 2000, ASTERISQUE, V265
[6]  
Browder W., 1963, T AM MATH SOC, V108, P353
[7]   H-TYPE GROUPS AND IWASAWA DECOMPOSITIONS [J].
COWLING, M ;
DOOLEY, AH ;
KORANYI, A ;
RICCI, F .
ADVANCES IN MATHEMATICS, 1991, 87 (01) :1-41
[8]  
Cowling M.G., 1998, J GEOM ANAL, V8, P199
[9]   A CLASS OF NONSYMMETRIC HARMONIC RIEMANNIAN SPACES [J].
DAMEK, E ;
RICCI, F .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :139-142
[10]  
Damek E., 1987, COLLOQ MATH-WARSAW, V53, P239, DOI [DOI 10.4064/CM-53-2-239-247, 10.4064/cm-53-2-239-247]