Distortion of quasiconformal maps in terms of the quasihyperbolic metric

被引:7
作者
Soultanis, Elefterios [1 ]
Williams, Marshall [2 ]
机构
[1] Univ Helsinki, FI-00014 Helsinki, Finland
[2] Univ Jyvaskyla, Dept Math, Jyvaskyla 40014, Finland
基金
芬兰科学院;
关键词
Metric measure spaces; Spaces of Q-bounded geometry; Quasiconformal maps; Quasihyperbolic metric;
D O I
10.1016/j.jmaa.2013.01.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend a theorem of Gehring and Osgood from 1979 - relating to the distortion of the quasihyperbolic metric by a quasiconformal mapping between Euclidean domains - to the setting of metric measure spaces of Q-bounded geometry. When the underlying target space is bounded, we require that the boundary of the image has at least two points. We show that even in the manifold setting, this additional assumption is necessary. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:626 / 634
页数:9
相关论文
共 11 条
  • [1] SHARP DISTORTION-THEOREMS FOR QUASICONFORMAL MAPPINGS
    ANDERSON, GD
    VAMANAMURTHY, MK
    VUORINEN, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 305 (01) : 95 - 111
  • [2] [Anonymous], 1971, LECT NOTES MATH
  • [3] SPHERICALIZATION AND FLATTENING
    Balogh, Zoltan M.
    Buckley, Stephen M.
    [J]. CONFORMAL GEOMETRY AND DYNAMICS, 2005, 9 : 76 - 101
  • [4] Bonk M., 2001, Asterisque, V270
  • [5] Buckley SM, 2008, INDIANA U MATH J, V57, P837
  • [6] UNIFORM DOMAINS AND THE QUASI-HYPERBOLIC METRIC
    GEHRING, FW
    OSGOOD, BG
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1979, 36 : 50 - 74
  • [7] Quasiconformal maps in metric spaces with controlled geometry
    Heinonen, J
    Koskela, P
    [J]. ACTA MATHEMATICA, 1998, 181 (01) : 1 - 61
  • [8] Heinonen J, 2001, J ANAL MATH, V85, P87
  • [9] Heinonen J., 2001, Lectures on analysis on metric spaces, DOI 10.1007/978-1-4613-0131-8
  • [10] Quasiconformal deformations and volume growth
    Herron, DA
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2006, 92 : 161 - 199