Comparison of Reconstruction Methods for Multi-compartmental Model in Diffusion Tensor Imaging

被引:0
作者
Shakya, Snehlata [1 ]
Kumar, Sanjeev [1 ]
机构
[1] Indian Inst Technol Roorkee, Roorkee, Uttarakhand, India
来源
PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON COMPUTER VISION AND IMAGE PROCESSING, CVIP 2018, VOL 2 | 2020年 / 1024卷
关键词
Crossing fibres; DTI; Lasso; Least absolute shrinkage; MRI; MRI;
D O I
10.1007/978-981-32-9291-8_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diffusion tensor imaging (DTI) is one of the magnetic resonance techniques to describe the anisotropic diffusion in terms of its orientation. DTI gives the direction of white matter fibers in a single direction. However, multi-fiber heterogeneity can be present at several places of the human brain. Recently, a multi-compartmental model (which uses noncentral Wishart distributions) was proposed to improve the state of the art of solving this multi-fiber heterogeneity. In this model, nonnegative least square (NNLS) method was used for solving the inverse problem which is based on L-2 norm minimization. In this paper, results are obtained with the least absolute shrinkage and selection operator (L-1 regularization). In particular, we study the performance of NNLS and nonnegative lasso methods and shown that the later method outperforms for several cases.
引用
收藏
页码:461 / 469
页数:9
相关论文
共 16 条
  • [1] MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING
    BASSER, PJ
    MATTIELLO, J
    LEBIHAN, D
    [J]. BIOPHYSICAL JOURNAL, 1994, 66 (01) : 259 - 267
  • [2] Quantitative Comparison of Reconstruction Methods for Intra-Voxel Fiber Recovery From Diffusion MRI
    Daducci, Alessandro
    Jorge Canales-Rodriguez, Erick
    Descoteaux, Maxime
    Garyfallidis, Eleftherios
    Gur, Yaniv
    Lin, Ying-Chia
    Mani, Merry
    Merlet, Sylvain
    Paquette, Michael
    Ramirez-Manzanares, Alonso
    Reisert, Marco
    Reis Rodrigues, Paulo
    Sepehrband, Farshid
    Caruyer, Emmanuel
    Choupan, Jeiran
    Deriche, Rachid
    Jacob, Mathews
    Menegaz, Gloria
    Prckovska, Vesna
    Rivera, Mariano
    Wiaux, Yves
    Thiran, Jean-Philippe
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (02) : 384 - 399
  • [3] Visualization of neural tissue water compartments using biexponential diffusion tensor MRI
    Inglis, BA
    Bossart, EL
    Buckley, DL
    Wirth, ED
    Mareci, TH
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2001, 45 (04) : 580 - 587
  • [4] A novel tensor distribution model for the diffusion-weighted MR signal
    Jian, Bing
    Vemuri, Baba C.
    Ozarslan, Evren
    Carney, Paul R.
    Mareci, Thomas H.
    [J]. NEUROIMAGE, 2007, 37 (01) : 164 - 176
  • [5] Jones DK, 2011, METHODS MOL BIOL, V711, P127, DOI 10.1007/978-1-61737-992-5_6
  • [6] Kumar R, 2009, LECT NOTES COMPUT SC, V5636, P139, DOI 10.1007/978-3-642-02498-6_12
  • [7] Lawson C.L., 1974, Solving Least-Squares Problems, P161
  • [8] Diffusion and perfusion MRI: basic physics
    Luypaert, R
    Boujraf, S
    Sourbron, S
    Osteaux, M
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2001, 38 (01) : 19 - 27
  • [9] On the existence of non-central Wishart distributions
    Mayerhofer, Eberhard
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 114 : 448 - 456
  • [10] Mori S, 1999, ANAT REC, V257, P102