New Materials and Processes for Directed Self-Assembly

被引:11
作者
Chang, Shih-Wei [1 ]
Evans, Jessica P. [3 ]
Ge, Shouren [3 ]
Ginzburg, Valeriy V. [2 ]
Kramer, John W. [2 ]
Landes, Brian [2 ]
Lee, Christopher [1 ]
Meyers, Greg [2 ]
Murray, Daniel J. [2 ]
Park, Jong [1 ]
Sharma, Rahul [3 ]
Trefonas, Peter, III [1 ]
Weinhold, Jeffrey D. [3 ]
Zhang, Jieqian [1 ]
Hustad, Phillip D. [1 ]
机构
[1] Dow Elect Mat, 455 Forest St, Marlborough, MA 01752 USA
[2] Dow Chem Co USA, Michigan Operat, Midland, MI 48674 USA
[3] Dow Chem Co USA, Freeport, TX 77541 USA
来源
ALTERNATIVE LITHOGRAPHIC TECHNOLOGIES V | 2013年 / 8680卷
关键词
Block copolymer; BCP; directed self assembly; DSA; graphoepitaxy; PS-PMMA; BLOCK-COPOLYMERS; TEMPERATURE-DEPENDENCE; ASYMMETRIC DIBLOCK; DIFFUSION; LITHOGRAPHY; POLYSTYRENE; ORIENTATION; ORDER;
D O I
10.1117/12.2011604
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Directed self- assembly (DSA) of block copolymers (BCPs) is a promising technology for advanced patterning at future technology nodes, but significant hurdles remain for commercial implementation. The most widely studied material for DSA is poly(styrene-block-methyl methacrylate) (PS-PMMA), but the relatively weak segregation strength of PS-PMMA results in some limitations. This paper reports on these limitations for PS-PMMA and highlights a path to success through use of more strongly segregated "high-chi" block copolymers. In general, stronger segregation is predicted to lower defectivity at equilibrium, but unfortunately, kinetics of self assembly also becomes much slower as segregation strength increases. Recognizing diffusion is much faster for cylinder morphologies than lamellar ones, we have investigated new cylinder-forming BCPs that enable defect elimination with thermal annealing processes. In addition, a formulation strategy is presented that further improves the kinetics of the assembly process, enabling tremendous improvements in defectivity over simple BCP systems. Excitingly, successful chemoepitaxy DSA with a high-chi lamellar BCP is also demonstrated using a thermal annealing process and no top coat. These technologies hold promise to enable DSA with thermal annealing processing across pitches from 40 - 16 nm.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Polarity-Switching Top Coats Enable Orientation of Sub-10-nm Block Copolymer Domains [J].
Bates, Christopher M. ;
Seshimo, Takehiro ;
Maher, Michael J. ;
Durand, William J. ;
Cushen, Julia D. ;
Dean, Leon M. ;
Blachut, Gregory ;
Ellison, Christopher J. ;
Willson, C. Grant .
SCIENCE, 2012, 338 (6108) :775-779
[2]   Block copolymers - Designer soft materials [J].
Bates, FS ;
Fredrickson, GH .
PHYSICS TODAY, 1999, 52 (02) :32-38
[3]   Polymer self assembly in semiconductor microelectronics [J].
Black, C. T. ;
Ruiz, R. ;
Breyta, G. ;
Cheng, J. Y. ;
Colburn, M. E. ;
Guarini, K. W. ;
Kim, H.-C. ;
Zhang, Y. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2007, 51 (05) :605-633
[4]  
Chang S. W., 2012, P SPIE, V8323
[5]   Dense self-assembly on sparse chemical patterns: Rectifying and multiplying lithographic patterns using block copolymers [J].
Cheng, Joy Y. ;
Rettner, Charles T. ;
Sanders, Daniel P. ;
Kim, Ho-Cheol ;
Hinsberg, William D. .
ADVANCED MATERIALS, 2008, 20 (16) :3155-3158
[6]   Simple and Versatile Methods To Integrate Directed Self-Assembly with Optical Lithography Using a Polarity-Switched Photoresist [J].
Cheng, Joy Y. ;
Sanders, Daniel P. ;
Truong, Hoa D. ;
Harrer, Stefan ;
Friz, Alexander ;
Holmes, Steven ;
Colburn, Matthew ;
Hinsberg, William D. .
ACS NANO, 2010, 4 (08) :4815-4823
[7]   Templated self-assembly of block copolymers: Top-down helps bottom-up [J].
Cheng, Joy Y. ;
Ross, Caroline A. ;
Smith, Henry I. ;
Thomas, Edwin L. .
ADVANCED MATERIALS, 2006, 18 (19) :2505-2521
[8]  
Hadjichristidis N., 2002, Block Copolymers: Synthetic Strategies, Physical Properties, and Applications
[9]   Temperature dependence of order, disorder, and defects in laterally confined diblock copolymer cylinder monolayers [J].
Hammond, MR ;
Cochran, E ;
Fredrickson, GH ;
Kramer, EJ .
MACROMOLECULES, 2005, 38 (15) :6575-6585
[10]   BLOCK COPOLYMER THEORY .4. NARROW INTERPHASE APPROXIMATION [J].
HELFAND, E ;
WASSERMAN, ZR .
MACROMOLECULES, 1976, 9 (06) :879-888