Total forcing versus total domination in cubic graphs

被引:12
作者
Dayila, Randy [1 ,2 ]
Henning, Michael A. [1 ]
机构
[1] Univ Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South Africa
[2] Univ Houston Downtown, Dept Math & Stat, Houston, TX 77002 USA
关键词
Total forcing set; Total dominating set; Cubic graph; NUMBER; BOUNDS;
D O I
10.1016/j.amc.2019.02.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set S of vertices in a graph G is a total dominating set of G if every vertex has a neighbor in S. The total domination number gamma(t)(G), is the minimum cardinality of a total dominating set of G. A total forcing set in a graph G is a forcing set (zero forcing set) in G which induces a subgraph without isolated vertices. The total forcing number of G, denoted F-t(G), is the minimum cardinality of a total forcing set in G. Our main contribution is to show that the total forcing number and the total domination number of a cubic graph are related. More precisely, we prove that if G is a connected cubic graph different from K-3,K-3, then F-t(G) <= 3/2 gamma(t)(G). (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:385 / 395
页数:11
相关论文
共 29 条
[1]   Upper bounds on the k-forcing number of a graph [J].
Amos, David ;
Caro, Yair ;
Davila, Randy ;
Pepper, Ryan .
DISCRETE APPLIED MATHEMATICS, 2015, 181 :1-10
[2]  
[Anonymous], THESIS
[3]   Some remarks on domination [J].
Archdeacon, D ;
Ellis-Monaghan, J ;
Fisher, D ;
Froncek, D ;
Lam, PCB ;
Seager, S ;
Wei, B ;
Yuster, R .
JOURNAL OF GRAPH THEORY, 2004, 46 (03) :207-210
[4]   Zero forcing sets and the minimum rank of graphs [J].
Barioli, Francesco ;
Barrett, Wayne ;
Butler, Steve ;
Cioaba, Sebastian M. ;
Cvetkovic, Dragos ;
Fallat, Shaun M. ;
Godsil, Chris ;
Haemers, Willem ;
Hogben, Leslie ;
Mikkelson, Rana ;
Narayan, Sivaram ;
Pryporova, Olga ;
Sciriha, Irene ;
So, Wasin ;
Stevanovic, Dragan ;
van der Holst, Hein ;
Vander Meulen, Kevin N. ;
Wehe, Amy Wangsness .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1628-1648
[5]   Parameters Related to Tree-Width, Zero Forcing, and Maximum Nullity of a Graph [J].
Barioli, Francesco ;
Barrett, Wayne ;
Fallat, Shaun M. ;
Hall, H. Tracy ;
Hogben, Leslie ;
Shader, Bryan ;
van den Driessche, P. ;
van der Holst, Hein .
JOURNAL OF GRAPH THEORY, 2013, 72 (02) :146-177
[6]   Complexity and computation of connected zero forcing [J].
Brimkov, Boris ;
Hicks, Illya V. .
DISCRETE APPLIED MATHEMATICS, 2017, 229 :31-45
[7]   Logic circuits from zero forcing [J].
Burgarth, Daniel ;
Giovannetti, Vittorio ;
Hogben, Leslie ;
Severini, Simone ;
Young, Michael .
NATURAL COMPUTING, 2015, 14 (03) :485-490
[8]  
Caro Y., 2015, THEORY APPL GRAPHS, V2
[9]  
Chekuri C, 2009, LECT NOTES COMPUT SC, V5555, P254, DOI 10.1007/978-3-642-02927-1_22
[10]   SMALL TRANSVERSALS IN HYPERGRAPHS [J].
CHVATAL, V ;
MCDIARMID, C .
COMBINATORICA, 1992, 12 (01) :19-26