Fabrication of Bismuth Telluride Thermoelectric Films Containing Conductive Polymers Using a Printing Method

被引:57
作者
Kato, Kunihisa [1 ,2 ]
Hagino, Harutoshi [2 ]
Miyazaki, Koji [2 ]
机构
[1] Lintec Corp, Res Ctr, Warabi, Saitama 3350005, Japan
[2] Kyushu Inst Technol, Dept Mech & Control Engn, Tobata Ku, Kitakyushu, Fukuoka 8048550, Japan
关键词
Conductive polymer; bismuth telluride; microparticles; thermal conductivity; THERMAL-CONDUCTIVITY; 3-OMEGA METHOD; NANOCRYSTAL; SOLVENT;
D O I
10.1007/s11664-012-2420-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We prepared a mixture of thermoelectric bismuth telluride particles, a conductive polymer [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)], poly(acrylic acid) (PAA), and several organic additives to fabricate thermoelectric films using printing or coating techniques. In the mixture, the organic components (PEDOT:PSS, PAA, and an additive) act as a binder to connect bismuth telluride particles mechanically and electrically. Among the organic additives used, glycerol significantly enhanced the electrical conductivity and bismuth telluride particle dispersibility in the mixture. Bi0.4Te3.0Sb1.6 films fabricated by spin-coating the mixture showed a thermoelectric figure of merit (ZT) of 0.2 at 300 K when the Bi0.4Te3Sb1.6 particle diameter was 2.8 mu m and its concentration in the elastic films was 95 wt.%.
引用
收藏
页码:1313 / 1318
页数:6
相关论文
共 24 条
[1]   Effects of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) [J].
Ashizawa, S ;
Horikawa, R ;
Okuzaki, H .
SYNTHETIC METALS, 2005, 153 (1-3) :5-8
[2]   Data reduction in 3ω method for thin-film thermal conductivity determination [J].
Borca-Tasciuc, T ;
Kumar, AR ;
Chen, G .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (04) :2139-2147
[3]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/NMAT3012, 10.1038/nmat3012]
[4]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232
[5]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5
[6]   Numerical simulation of the 3ω method for measuring the thermal conductivity [J].
Jacquot, A ;
Lenoir, B ;
Dauscher, A ;
Stölzer, M ;
Meusel, J .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (07) :4733-4738
[7]   Enhanced figure of merit of a porous thin film of bismuth antimony telluride [J].
Kashiwagi, Makoto ;
Hirata, Shuzo ;
Harada, Kentaro ;
Zheng, Yanqiong ;
Miyazaki, Koji ;
Yahiro, Masayuki ;
Adachi, Chihaya .
APPLIED PHYSICS LETTERS, 2011, 98 (02)
[8]   Improved Thermoelectric Behavior of Nanotube-Filled Polymer Composites with Poly(3,4-ethylenedioxythiophene) Poly(styrenesulfonate) [J].
Kim, Dasaroyong ;
Kim, Yeonseok ;
Choi, Kyunwho ;
Grunlan, Jaime C. ;
Yu, Choongho .
ACS NANO, 2010, 4 (01) :513-523
[9]   Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents [J].
Kim, JY ;
Jung, JH ;
Lee, DE ;
Joo, J .
SYNTHETIC METALS, 2002, 126 (2-3) :311-316
[10]   Thin-Film Thermoelectric Module for Power Generator Applications Using a Screen-Printing Method [J].
Lee, Heon-Bok ;
Yang, Hyun Jeong ;
We, Ju Hyung ;
Kim, Kukjoo ;
Choi, Kyung Cheol ;
Cho, Byung Jin .
JOURNAL OF ELECTRONIC MATERIALS, 2011, 40 (05) :615-619