Stress-energy tensors and the Lichnerowicz Laplacian

被引:43
作者
Baird, Paul [1 ]
机构
[1] Univ Bretagne Occidentale, Dept Matemat, F-29238 Brest 3, France
关键词
Stress-energy tensor; Conservation laws; Laplacian; Harmonic map; Biharmonic map; Monotonicity formulae; Hopf fibration;
D O I
10.1016/j.geomphys.2008.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To a critical point of a variational problem, we associate a divergence-free symmetric 2-tensor, called the stress-energy tensor. We calculate the Laplacian of this object as defined by Lichnerowicz. This has the property that it commutes with the divergence provided the Ricci curvature is covariantly constant. We deduce relations between different stress-energy tensors, discuss growth formulae and harmonic maps between spheres. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1329 / 1342
页数:14
相关论文
共 17 条
[1]   BERNSTEIN THEOREMS FOR HARMONIC MORPHISMS FROM R3 AND S3 [J].
BAIRD, P ;
WOOD, JC .
MATHEMATISCHE ANNALEN, 1988, 280 (04) :579-603
[2]  
Baird P., 1982, LECT NOTES MATH, V894, P1
[3]  
BAIRD P., 1992, ANN GLOB ANAL GEOM, V10, P63, DOI [10.1007/BF00128338, DOI 10.1007/BF00128338]
[4]   SCALAR CURVATURE FUNCTIONS IN A CONFORMAL CLASS OF METRICS AND CONFORMAL TRANSFORMATIONS [J].
BOURGUIGNON, JP ;
EZIN, JP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 301 (02) :723-736
[5]  
Chern S. S., 1965, S HON M MORS, P187
[6]   ON REPRESENTING HOMOTOPY CLASSES BY HARMONIC MAPS [J].
EELLS, J ;
FERREIRA, MJ .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1991, 23 :160-162
[7]  
Eells J., 1983, CBMS REGIONAL C SERI, V50
[8]  
HELEIN F, 1997, HARMONIC MAPS CONSER
[9]  
Jiang G. Y., 1987, ACTA MATH SINICA, V30, P220
[10]  
KAMISSOKO D, 2001, THESIS U BREST