Independent control of water retention and acid-base pairing through double-shelled microcapsules to confer membranes with enhanced proton conduction under low humidity

被引:80
作者
Wang, Jingtao [1 ]
Zhang, Zizhuo [1 ]
Yue, Xiujun [1 ]
Nie, Lingli [1 ]
He, Guangwei [1 ]
Wu, Hong [1 ]
Jiang, Zhongyi [1 ]
机构
[1] Tianjin Univ, Key Lab Green Chem Technol, Sch Chem Engn & Technol, Minist Educ, Tianjin 300072, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
POLYMER ELECTROLYTE MEMBRANES; POLY(ETHER ETHER KETONE); FUEL-CELLS; EXCHANGE-MEMBRANE; NANOCOMPOSITE MEMBRANES; TEMPERATURE; IMIDAZOLE;
D O I
10.1039/c2ta00186a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton exchange membranes (PEM) with affordable and controllable proton conductivity under low humidity are crucial to the commercial application of PEM fuel cells. In this study, double-shelled polymer microcapsules bearing a carboxylic acid inner shell and imidazole outer shell (PMC-Ns) are synthesized via distillation-precipitation polymerization and then incorporated into a sulfonated poly(ether ether ketone) matrix to fabricate composite membranes. The inner shell renders the absorbed water of lower chemical potential and higher bound water content, yielding the composite membrane with enhanced water retention properties. The higher water uptake ensures composite membrane facilitated proton transfer via a vehicle mechanism and the lower water loss confers a reduced proton conductivity decline. The outer shell generates sulfonic acid-imidazole pairs within the membranes, which construct low-energy-barrier pathways to facilitate proton transfer via the Grotthuss mechanism. Under identical conditions, PMC-Ns endow much higher proton conductivity to composite membranes than the microcapsules with both carboxylic acid inner shell and outer shell, or both imidazole inner shell and outer shell. Particularly, incorporating 20 wt% PMC-Ns affords the composite membrane a 1.7 times increase in proton conductivity under 100% relative humidity (RH) and a 41.8 times increase in proton conductivity under 20% RH. Moreover, the methanol barrier property of the composite membranes is explored.
引用
收藏
页码:2267 / 2277
页数:11
相关论文
共 39 条
[1]   Thermal curing of PBI membranes for high temperature PEM fuel cells [J].
Aili, David ;
Cleemann, Lars N. ;
Li, Qingfeng ;
Jensen, Jens Oluf ;
Christensen, Erik ;
Bjerrum, Niels J. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (12) :5444-5453
[2]  
Bureekaew S, 2009, NAT MATER, V8, P831, DOI [10.1038/NMAT2526, 10.1038/nmat2526]
[3]   Nafion-Carbon Nanocomposite Membranes Prepared Using Hydrothermal Carbonization for Proton-Exchange-Membrane Fuel Cells [J].
Chai, Zhanli ;
Wang, Cheng ;
Zhang, Hongjie ;
Doherty, Cara M. ;
Ladewig, Bradley P. ;
Hill, Anita J. ;
Wang, Huanting .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (24) :4394-4399
[4]   Recent developments in proton exchange membranes for fuel cells [J].
Devanathan, Ram .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) :101-119
[5]   Layer-by-layer self-assembly of composite polyelectrolyte-nafion membranes for direct methanol fuel cells [J].
Jiang, SP ;
Liu, ZC ;
Tian, ZQ .
ADVANCED MATERIALS, 2006, 18 (08) :1068-+
[6]   Phosphonic acid functionalized silicas for intermediate temperature proton conduction [J].
Jin, Yong Gang ;
Qiao, Shi Zhang ;
Xu, Zhi Ping ;
Yan, Zhimin ;
Huang, Yining ;
da Costa, Joao C. Diniz ;
Lu, Gao Qing .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (16) :2363-2372
[7]   Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells [J].
Kerres, J ;
Ullrich, A ;
Meier, F ;
Häring, T .
SOLID STATE IONICS, 1999, 125 (1-4) :243-249
[8]   Proton conductivity: Materials and applications [J].
Kreuer, KD .
CHEMISTRY OF MATERIALS, 1996, 8 (03) :610-641
[9]   Design and properties of functional hybrid organic-inorganic membranes for fuel cells [J].
Laberty-Robert, C. ;
Valle, K. ;
Pereira, F. ;
Sanchez, C. .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (02) :961-1005
[10]   Anhydrous Proton Conducting Hybrid Membrane Electrolytes for High Temperature (>100°C) Proton Exchange Membrane Fuel Cells [J].
Lakshminarayana, G. ;
Vijayaraghavan, R. ;
Nogami, Masayuki ;
Kityk, I. V. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (04) :B376-B383