A size-dependent structural evolution of ZnS nanoparticles

被引:31
作者
Khalkhali, Mohammad [1 ]
Liu, Qingxia [1 ]
Zeng, Hongbo [1 ]
Zhang, Hao [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
加拿大自然科学与工程研究理事会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; PERMANENT DIPOLE-MOMENT; QUANTUM DOTS; PHASE-TRANSFORMATION; WURTZITE ZNS; NANOCRYSTALS; TEMPERATURE; TOXICITY; ORIGIN;
D O I
10.1038/srep14267
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, ZnS quantum dots have attracted a lot of attention since they can be a suitable alternative for cadmium-based quantum dots, which are known to be highly carcinogenic for living systems. However, the structural stability of nanocrystalline ZnS seems to be a challenging issue since ZnS nanoparticles have the potential to undergo uncontrolled structural change at room temperature. Using the molecular dynamics technique, we have studied the structural evolution of 1 to 5 nm freestanding ZnS nanoparticles with zinc-blende and wurtzite crystal structures. Simulation results revealed that relaxed configurations of ZnS nanoparticles larger than 3 nm consist of three regions: a) a crystalline core, b) a distorted network of 4-coordinated atoms environing the crystalline core, and c) a surface structure made entirely of 3-coordinated atoms. Decreasing the size of ZnS nanoparticle to 2 nm will cause the crystalline core to disappear. Further reducing the size will cause all of the atoms to become 3-coordinated. Dipole moments of zinc-blende and wurtzite nanoparticles are in the same range when the nanoparticles are smaller than 3 nm. Increasing the size makes dipole moments converge to the bulk values. This makes zinc-blende and wurtzite nanoparticles less and more polar, respectively.
引用
收藏
页数:17
相关论文
共 42 条
  • [1] Semiconductor clusters, nanocrystals, and quantum dots
    Alivisatos, AP
    [J]. SCIENCE, 1996, 271 (5251) : 933 - 937
  • [2] Morphological and phase stability of zinc blende, amorphous and mixed core-shell ZnS nanoparticles
    Barnard, A. S.
    Feigl, C. A.
    Russo, S. P.
    [J]. NANOSCALE, 2010, 2 (10) : 2294 - 2301
  • [3] Semiconductor nanocrystals as fluorescent biological labels
    Bruchez, M
    Moronne, M
    Gin, P
    Weiss, S
    Alivisatos, AP
    [J]. SCIENCE, 1998, 281 (5385) : 2013 - 2016
  • [4] InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment
    Brunetti, Virgilio
    Chibli, Hicham
    Fiammengo, Roberto
    Galeone, Antonio
    Malvindi, Maria Ada
    Vecchio, Giuseppe
    Cingolani, Roberto
    Nadeau, Jay L.
    Pompa, Pier Paolo
    [J]. NANOSCALE, 2013, 5 (01) : 307 - 317
  • [5] Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles
    Cho, KS
    Talapin, DV
    Gaschler, W
    Murray, CB
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (19) : 7140 - 7147
  • [6] AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES
    DELLEY, B
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) : 508 - 517
  • [7] From molecules to solids with the DMol3 approach
    Delley, B
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) : 7756 - 7764
  • [8] Safe, stable and effective nanotechnology: phase mapping of ZnS nanoparticles
    Feigl, C.
    Russo, S. P.
    Barnard, A. S.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (24) : 4971 - 4980
  • [9] Size- and shape-dependent phase transformations in wurtzite ZnS nanostructures
    Feigl, Christopher A.
    Barnard, Amanda S.
    Russo, Salvy P.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (28) : 9871 - 9879
  • [10] Structure and properties of ZnS nanoclusters
    Hamad, S
    Catlow, CRA
    Spanó, E
    Matxain, JM
    Ugalde, JM
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (07) : 2703 - 2709