Effects of hydrodynamic conditions on the composition, spatiotemporal distribution of different extracellular polymeric substances and the architecture of biofilms

被引:29
作者
Pan, Mei [1 ,3 ]
Li, Haizong [2 ]
Han, Xiangyun [1 ,3 ]
Ma, Weixing [1 ,3 ]
Li, Xuan [1 ,3 ]
Guo, Qingyuan [1 ,3 ]
Yang, Bairen [1 ,3 ]
Ding, Cheng [1 ,3 ]
Ma, Yuwen [1 ,3 ]
机构
[1] Yancheng Inst Technol, Coll Environm Sci & Engn, Yingbin Rd 9, Yancheng 224003, Jiangsu, Peoples R China
[2] Yancheng Environm Monitoring Ctr, Yancheng 224002, Peoples R China
[3] Yancheng Inst Technol, Jiangsu Prov Engn Res Ctr Intelligent Environm Pro, Yancheng 224051, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrodynamics; Biofilm; Extracellular polymeric substance; Morphological structure; Biofilm formation; HYDRAULIC RESISTANCE; EPS FRACTIONS; MATRIX; ULTRAFILTRATION; SUCCESSION; COMMUNITY; VELOCITY; SLUDGE; ROLES; CELLS;
D O I
10.1016/j.chemosphere.2022.135965
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial biofilms are common on abiotic and biotic surfaces, especially in rivers, which drive crucial ecosystem processes. The microorganisms of biofilms are surrounded by a self-produced extracellular polymeric substance (EPS). In this study, we investigated the effects of different hydrodynamic conditions on the composition, spatiotemporal distribution of different extracellular polymeric substances, and the architecture of biofilms. Multidisciplinary methods offer complementary insights into complex architecture correlations in biofilms. The biofilms formed in turbulent flow with high shear force were thin but dense. However, the biofilms formed under laminar flow conditions were thick but relatively loose. The thickness and compactness of the biofilms formed in the transitional flow were different from those of the other biofilms. The compact structure of the biofilm helped to resist shear forces to minimize detachment. Under the turbulent flow condition, bacteria, exopolysaccharides, and extracellular proteins permeated through the biofilm, and more extracellular polysaccharides enveloped bacteria and extracellular proteins. However, under the transitional flow condition, the extracellular poly-saccharides and proteins were fewer than those under the turbulent flow condition; bacteria and algae were seen more prominently in the upper layer of the biofilm. Under the laminar flow condition, the distribution of extracellular polysaccharides, extracellular proteins, and bacteria was relatively uniform throughout the biofilm. The number of extracellular polysaccharides was greater than that of extracellular proteins. The total number of EPS in the biofilm was the largest under turbulent flow condition, followed by that under transitional flow condition and then under laminar flow condition. This study also observed that soluble EPS (S-EPS) were secreted first, followed by loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS). In particular, the adhesion of LB-EPS and flocculation capability of TB-EPS play some role in regulating biofilm formation. This study would help to perfect the five-stages theory of biofilm formation.
引用
收藏
页数:10
相关论文
共 59 条
[1]   Evaluation and optimization of multiple fluorophore analysis of a Pseudomonas aeruginosa biofilm [J].
Baird, Fiona J. ;
Wadsworth, Marilyn P. ;
Hill, Jane E. .
JOURNAL OF MICROBIOLOGICAL METHODS, 2012, 90 (03) :192-196
[2]   Effects of current velocity on the nascent architecture of stream microbial biofilms [J].
Battin, TJ ;
Kaplan, LA ;
Newbold, JD ;
Cheng, XH ;
Hansen, C .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (09) :5443-5452
[3]   Microbial landscapes: new paths to biofilm research [J].
Battin, Tom J. ;
Sloan, William T. ;
Kjelleberg, Staffan ;
Daims, Holger ;
Head, Ian M. ;
Curtis, Tom P. ;
Eberl, Leo .
NATURE REVIEWS MICROBIOLOGY, 2007, 5 (01) :76-81
[4]   The ecology and biogeochemistry of stream biofilms [J].
Battin, Tom J. ;
Besemer, Katharina ;
Bengtsson, Mia M. ;
Romani, Anna M. ;
Packmann, Aaron I. .
NATURE REVIEWS MICROBIOLOGY, 2016, 14 (04) :251-263
[5]   Biophysical controls on community succession in stream biofilms [J].
Besemer, Katharina ;
Singer, Gabriel ;
Limberger, Romana ;
Chlup, Ann-Kathrin ;
Hochedlinger, Gerald ;
Hoedl, Iris ;
Baranyi, Christian ;
Battin, Tom J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (15) :4966-4974
[6]   Microbial adhesion in flow displacement systems [J].
Busscher, HJ ;
van der Mei, HC .
CLINICAL MICROBIOLOGY REVIEWS, 2006, 19 (01) :127-+
[7]   The Folin-Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination [J].
Carlos Sanchez-Rangel, Juan ;
Benavides, Jorge ;
Basilio Heredia, J. ;
Cisneros-Zevallos, Luis ;
Jacobo-Velazquez, Daniel A. .
ANALYTICAL METHODS, 2013, 5 (21) :5990-5999
[8]   Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth [J].
Carniello, Vera ;
Peterson, Brandon W. ;
van der Mei, Henny C. ;
Busscher, Henk J. .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2018, 261 :1-14
[9]   Distribution of extracellular polymeric substances in aerobic granules [J].
Chen, M. Y. ;
Lee, D. J. ;
Tay, J. H. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 73 (06) :1463-1469
[10]   Staining of extracellular polymeric substances and cells in bioaggregates [J].
Chen, Ming-Yuan ;
Lee, Duu-Jong ;
Tay, Joo-Hwa ;
Show, Kuan-Yeow .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 75 (02) :467-474