Amended Kalman Filter for Maneuvering Target Tracking

被引:8
作者
Yang Yongjian [1 ]
Fan Xiaoguang [1 ]
Zhuo Zhenfu [1 ]
Wang Shengda [1 ]
Nan Jianguo [1 ]
Xu Yunshan [1 ]
机构
[1] Air Force Engn Univ, Aeronaut & Astronaut Engn Coll, Xian 710088, Peoples R China
关键词
Kalman filter (KF); Incomplete information; Amended KF (AKF); Maneuvering target tracking; BIAS;
D O I
10.1049/cje.2016.08.036
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The conventional Kalman filter (KF) which uses the current measurement to estimate the current state is a posterior estimation. KF is identified as the optimal estimation in linear models with Gaussian noise. However, the performance of KF with incomplete information may be degraded or diverged. In order to improve the performance of KF, an Amended KF (AKF) is proposed by using more posterior measurements. The principle, derivation and recursive process of AKF are presented. The differences among Kalman smoother, adaptive fading method and AKF are analyzed. The simulation results of target tracking with different covariance of motion model indicate the high precision and robustness of AKF.
引用
收藏
页码:1166 / 1171
页数:6
相关论文
共 18 条
[1]   ON THE OPTIMALITY OF 2-STAGE STATE ESTIMATION IN THE PRESENCE OF RANDOM BIAS [J].
ALOUANI, AT ;
XIA, P ;
RICE, TR ;
BLAIR, WD .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (08) :1279-1282
[2]   Tracking maneuvering targets with multiple sensors: Does more data always mean better estimates? [J].
Blair, WD ;
BarShalom, Y .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1996, 32 (01) :450-456
[3]   TREATMENT OF BIAS IN RECURSIVE FILTERING [J].
FRIEDLAND, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1969, AC14 (04) :359-+
[4]   Adaptive estimation of multiple fading factors in Kalman filter for navigation applications [J].
Geng, Yanrui ;
Wang, Jinling .
GPS SOLUTIONS, 2008, 12 (04) :273-279
[5]   New Kalman filter and smoother consistency tests [J].
Gibbs, Richard G. .
AUTOMATICA, 2013, 49 (10) :3141-3144
[6]   Optimal and suboptimal separate-bias Kalman estimators for a stochastic bias [J].
Ignagni, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (03) :547-551
[7]   SEPARATE-BIAS KALMAN ESTIMATOR WITH BIAS STATE NOISE [J].
IGNAGNI, MB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (03) :338-341
[8]   Optimal two-stage Kalman filter in the presence of random bias [J].
Keller, JY ;
Darouach, M .
AUTOMATICA, 1997, 33 (09) :1745-1748
[9]  
Kim KH, 2009, INT J CONTROL AUTOM, V7, P49, DOI [10.1007/s12555-009-0107-x, 10.1007/S12555-009-0107-x]
[10]   THEORY AND APPLICATION OF ADAPTIVE FADING MEMORY KALMAN FILTERS [J].
LEE, TS .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (04) :474-477