A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management

被引:155
作者
He, Jieshan [1 ]
Yang, Xiaoqing [1 ,2 ]
Zhang, Guoqing [1 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
[2] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase change materials; Battery thermal management; Thermal conductivity; Heat dissipation; Expanded graphite; Copper foam; LI-ION BATTERY; LITHIUM-ION; ELECTRIC VEHICLES; ENERGY STORAGE; COOLING SYSTEM; PCM; PERFORMANCE; OPTIMIZATION; ALUMINUM; PIPE;
D O I
10.1016/j.applthermaleng.2018.11.100
中图分类号
O414.1 [热力学];
学科分类号
摘要
In order to enhance the thermal conductivity and secondary heat dissipation capability of the phase change material (PCM) in battery thermal management (BTM) applications, a new kind of composite PCM (CPCM) is successfully prepared by constructing a binary thermal conductive skeleton of expanded graphite (EG)/copper foam (CF). The EG with porous structure can adsorb the PCM of paraffin and act as a micro-thermal-conductive framework to transfer the heat to the adjacent CF skeleton. The CF acts as a macro-skeleton to transfer the heat throughout the CPCM plate and enhance the heat transfer coefficient of the interface between the CPCM plate and air. In consequence, the obtained CPCM-based battery pack with EG/CF (CPCM-EG/CF) delivers much better cooling and temperature-uniformed performances than those without EG/CF or CF, especially under a secondary heat dissipation system of forced air convection. For example, the CPCM-EG/CF pack shows stable and lowest maximum temperature and temperature difference of 48.0 and 3.9 degrees C during the cycling charge-discharge tests under forced air flow, respectively.
引用
收藏
页码:984 / 991
页数:8
相关论文
共 45 条
[1]  
Al Hallaj S, 2000, J ELECTROCHEM SOC, V147, P3231, DOI 10.1149/1.1393888
[2]   A novel phase change based cooling system for prismatic lithium ion batteries [J].
Al-Zareer, Maan ;
Dincer, Ibrahim ;
Rosen, Marc A. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2018, 86 :203-217
[3]   Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams [J].
Alipanah, Morteza ;
Li, Xianglin .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 102 :1159-1168
[4]   Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment [J].
Alshaer, W. G. ;
Nada, S. A. ;
Rady, M. A. ;
Le Bot, Cedric ;
Del Barrio, Elena Palomo .
ENERGY CONVERSION AND MANAGEMENT, 2015, 89 :873-884
[5]   Thermal management of a Li-ion battery using carbon fiber-PCM composites [J].
Babapoor, A. ;
Azizi, M. ;
Karimi, G. .
APPLIED THERMAL ENGINEERING, 2015, 82 :281-290
[6]   Metal foam embedded in SEBS/paraffin/HDPE form-stable PCMs for thermal energy storage [J].
Chen, Peng ;
Gao, Xuenong ;
Wang, Yaqin ;
Xu, Tao ;
Fang, Yutang ;
Zhang, Zhengguo .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 149 :60-65
[7]   Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions [J].
Coleman, Brittany ;
Ostanek, Jason ;
Heinzel, John .
APPLIED ENERGY, 2016, 180 :14-26
[8]   Battery and battery management for hybrid electric vehicles: a review [J].
Conte, F. V. .
ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2006, 123 (10) :424-431
[9]   Investigation of the heat balance of bipolar NiMH-batteries [J].
Harmel, J ;
Ohms, D ;
Guth, U ;
Wiesener, K .
JOURNAL OF POWER SOURCES, 2006, 155 (01) :88-93
[10]   Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite [J].
Hussain, Abid ;
Tso, C. Y. ;
Chao, Christopher Y. H. .
ENERGY, 2016, 115 :209-218