PDD-Based Decoder for LDPC Codes With Model-Driven Neural Networks

被引:1
|
作者
Liu, Yihao
Zhao, Ming-Min [1 ]
Wang, Chan [1 ]
Lei, Ming
Zhao, Min-Jian
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Decoding; Iterative decoding; Signal processing algorithms; Neural networks; Computational complexity; Convex functions; Convergence; LDPC codes; penalty dual decomposition; deep learning; deep unfolding; model-driven;
D O I
10.1109/LCOMM.2022.3199747
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this work, we develop a double-loop iterative decoding algorithm for low density parity check (LDPC) codes based on the penalty dual decomposition (PDD) framework. We utilize the linear programming (LP) relaxation and the penalty method to handle the discrete constraints and the over-relaxation method is employed to improve convergence. Then, we unfold the proposed PDD decoding algorithm into a model-driven neural network, namely the learnable PDD decoding network (LPDN). We turn the tunable coefficients and parameters in the proposed PDD decoder into layer-dependent trainable parameters which can be optimized by gradient descent-based methods during network training. Simulation results demonstrate that the proposed LPDN with well-trained parameters is able to provide superior error-correction performance with much lower computational complexity as compared to the PDD decoder.
引用
收藏
页码:2532 / 2536
页数:5
相关论文
共 50 条
  • [1] Model-Driven Deep Learning ADMM Decoder for Irregular Binary LDPC Codes
    Guo, Xiaomeng
    Chang, Tsung-Hui
    Wang, Yongchao
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (02) : 571 - 575
  • [2] Hypernetwork Based Model-Driven Channel Neural Decoding
    Liang, Yuanhui
    Lam, Chan-Tong
    Wu, Qingle
    Ng, Benjamin K.
    Im, Sio-Kei
    IEEE ACCESS, 2024, 12 : 73228 - 73237
  • [3] Multi Layer Perceptron Neural Networks Decoder for LDPC Codes
    Karami, A. R.
    Attari, M. Ahmadian
    Tavakoli, H.
    2009 5TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-8, 2009, : 476 - 479
  • [4] Model-Driven DNN Decoder for Turbo Codes: Design, Simulation, and Experimental Results
    He, Yunfeng
    Zhang, Jing
    Jin, Shi
    Wen, Chao-Kai
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (10) : 6127 - 6140
  • [5] Spiking Neural Belief Propagation Decoder for Short Block Length LDPC Codes
    von Bank, Alexander
    Edelmann, Eike-Manuel
    Miao, Sisi
    Mandelbaum, Jonathan
    Schmalen, Laurent
    IEEE COMMUNICATIONS LETTERS, 2025, 29 (01) : 45 - 49
  • [6] Neural Self-Corrected Min-Sum Decoder for NR LDPC Codes
    Kim, Taehyun
    Park, Joo Sung
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (07) : 1504 - 1508
  • [7] A PDD Decoder for Binary Linear Codes With Neural Check Polytope Projection
    Wei, Yi
    Zhao, Ming-Min
    Zhao, Min-Jian
    Lei, Ming
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (10) : 1715 - 1719
  • [8] Customized Branched Neural Network-Aided Shuffled Min-Sum Decoder for Protograph LDPC Codes
    Wang, Yurong
    Lv, Liang
    Fang, Yi
    Li, Yonghui
    Mumtaz, Shahid
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (01) : 1399 - 1415
  • [9] A Model-Driven Deep Learning Method for Normalized Min-Sum LDPC Decoding
    Wang, Qing
    Wang, Shunfu
    Fang, Haoyu
    Chen, Leian
    Chen, Luyong
    Guo, Yuzhang
    2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2020,
  • [10] Model-Driven SOA for Sensor Networks
    Ibbotson, John
    Gibson, Christopher
    Geyik, Sahin
    Szymanski, Boleslaw K.
    Mott, David
    Braines, David
    Klapiscak, Tom
    Bergamaschi, Flavio
    GROUND/AIR MULTISENSOR INTEROPERABILITY, INTEGRATION, AND NETWORKING FOR PERSISTENT ISR II, 2011, 8047