iPSCs-based generation of vascular cells: reprogramming approaches and applications

被引:48
作者
Klein, Diana [1 ]
机构
[1] Univ Duisburg Essen, Univ Hosp Essen, Inst Cell Biol Canc Res, Virchowstr 173, D-45122 Essen, Germany
关键词
iPSC; Reprogramming; Differentiation; Vascular cell; Endothelial cell; Smooth muscle cell; PLURIPOTENT STEM-CELLS; SMOOTH-MUSCLE-CELLS; ENDOTHELIAL PROGENITOR CELLS; ENGINEERED BLOOD-VESSELS; FUNCTIONAL HUMAN LIVER; TGF-BETA; PHENOTYPIC HETEROGENEITY; LINEAGE DIFFERENTIATION; NEOINTIMAL HYPERPLASIA; EMBRYOLOGICAL ORIGIN;
D O I
10.1007/s00018-017-2730-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in the field of induced pluripotent stem cells (iPSCs) research have opened a new avenue for stem cell-based generation of vascular cells. Based on their growth and differentiation potential, human iPSCs constitute a well-characterized, generally unlimited cell source for the mass generation of lineage- and patient-specific vascular cells without any ethical concerns. Human iPSCs-derived vascular cells are perfectly suited for vascular disease modeling studies because patient-derived iPSCs possess the disease-causing mutation, which might be decisive for full expression of the disease phenotype. The application of vascular cells for autologous cell replacement therapy or vascular engineering derived from immune-compatible iPSCs possesses huge clinical potential, but the large-scale production of vascular-specific lineages for regenerative cell therapies depends on well-defined, highly reproducible culture and differentiation conditions. This review will focus on the different strategies to derive vascular cells from human iPSCs and their applications in regenerative therapy, disease modeling and drug discovery approaches.
引用
收藏
页码:1411 / 1433
页数:23
相关论文
共 180 条
[11]  
Berezin AE, 2017, DIABETES METAB SYND, V11, P215, DOI 10.1016/j.dsx.2016.08.007
[12]   Vascular Smooth Muscle Cells From Hypertensive Patient-Derived Induced Pluripotent Stem Cells to Advance Hypertension Pharmacogenomics [J].
Biel, Nikolett M. ;
Santostefano, Katherine E. ;
DiVita, Bayli B. ;
El Rouby, Nihal ;
Carrasquilla, Santiago D. ;
Simmons, Chelsey ;
Nakanishi, Mahito ;
Cooper-DeHoff, Rhonda M. ;
Johnson, Julie A. ;
Terada, Naohiro .
STEM CELLS TRANSLATIONAL MEDICINE, 2015, 4 (12) :1380-1390
[13]  
Burdsal CA, 1998, DEV BIOL, V198, P231, DOI 10.1016/S0012-1606(98)80001-8
[14]   CellNet: Network Biology Applied to Stem Cell Engineering [J].
Cahan, Patrick ;
Li, Hu ;
Morris, Samantha A. ;
da Rocha, Edroaldo Lummertz ;
Daley, George Q. ;
Collins, James J. .
CELL, 2014, 158 (04) :903-915
[15]   Absence of Nodal signaling promotes precocious neural differentiation in the mouse embryo [J].
Camus, Anne ;
Perea-Gomez, Aitana ;
Moreau, Anne ;
Collignon, Jerome .
DEVELOPMENTAL BIOLOGY, 2006, 295 (02) :743-755
[16]   Developmental biology - One cell, two fates [J].
Carmeliet, P .
NATURE, 2000, 408 (6808) :43-45
[17]   Three-Dimensional Vascular Network Assembly From Diabetic Patient-Derived Induced Pluripotent Stem Cells [J].
Chan, Xin Yi ;
Black, Rebecca ;
Dickerman, Kayla ;
Federico, Joseph ;
Levesque, Mathieu ;
Mumm, Jeff ;
Gerecht, Sharon .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2015, 35 (12) :2677-2685
[18]  
Chen GK, 2011, NAT METHODS, V8, P424, DOI [10.1038/NMETH.1593, 10.1038/nmeth.1593]
[19]   MicroRNA-199b Modulates Vascular Cell Fate During iPS Cell Differentiation by Targeting the Notch Ligand Jagged1 and Enhancing VEGF Signaling [J].
Chen, Ting ;
Margariti, Andriana ;
Kelaini, Sophia ;
Cochrane, Amy ;
Guha, Shaunta T. ;
Hu, Yanhua ;
Stitt, Alan W. ;
Zhang, Li ;
Xu, Qingbo .
STEM CELLS, 2015, 33 (05) :1405-1418
[20]   Directed differentiation of embryonic origin-specific vascular smooth muscle subtypes from human pluripotent stem cells [J].
Cheung, Christine ;
Bernardo, Andreia S. ;
Pedersen, Roger A. ;
Sinha, Sanjay .
NATURE PROTOCOLS, 2014, 9 (04) :929-938