Non-classical conditional probability and the quantum no-cloning theorem

被引:6
作者
Niestegge, Gerd [1 ]
机构
[1] Fraunhofer ESK, D-80686 Munich, Germany
关键词
quantum information; no-cloning theorem; quantum foundations; MECHANICS; SPACES; STATES; CANNOT;
D O I
10.1088/0031-8949/90/9/095101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum mechanical no-cloning theorem for pure states is generalized and transfered to the quantum logics with a conditional probability calculus in a rather abstract, though simple and basic fashion without relying on a tensor product construction or finite dimension as required in other generalizations.
引用
收藏
页数:6
相关论文
共 30 条
[1]  
[Anonymous], 1979, Casopis pro pestovani matematiky
[2]  
[Anonymous], 1967, COMMUN MATH PHYS, DOI 10.1007/BF01646019.1'13,17
[3]   Noncommuting mixed states cannot be broadcast [J].
Barnum, H ;
Caves, CM ;
Fuchs, CA ;
Jozsa, R ;
Schumacher, B .
PHYSICAL REVIEW LETTERS, 1996, 76 (15) :2818-2821
[4]  
Barnum H, 2006, ARXIVQUANTPH0611295
[5]   Generalized no-broadcasting theorem [J].
Barnum, Howard ;
Barrett, Jonathan ;
Leifer, Matthew ;
Wilce, Alexander .
PHYSICAL REVIEW LETTERS, 2007, 99 (24)
[6]  
Beltrametti E. G., 1984, The Logic of Quantum Mechanics
[7]  
Beran L., 1985, Orthomodular Lattices: Algebraic Approach. Mathematics and its Applications
[8]   The logic of quantum mechanics [J].
Birkhoff, G ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1936, 37 :823-843
[9]   Optimal universal and state-dependent quantum cloning [J].
Bruss, D ;
DiVincenzo, DP ;
Ekert, A ;
Fuchs, CA ;
Macchiavello, C ;
Smolin, JA .
PHYSICAL REVIEW A, 1998, 57 (04) :2368-2378