Effective action for higher spin fields on (A)dS backgrounds

被引:27
作者
Bastianelli, Fiorenzo [1 ,2 ]
Bonezzi, Roberto [1 ,2 ]
Corradini, Olindo [3 ,4 ]
Latini, Emanuele [5 ,6 ]
机构
[1] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy
[2] INFN, Sez Bologna, I-40126 Bologna, Italy
[3] Univ Autonoma Chiapas, Ctr Estudios Fis & Matemat Basicas & Aplicadas, Tuxtla Gutierrez 29050, Mexico
[4] Univ Modena & Reggio Emilia, Dipartimento Fis, I-41125 Modena, Italy
[5] Univ Zurich Irchel, Inst Math, CH-8057 Zurich, Switzerland
[6] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2012年 / 12期
关键词
Extended Supersymmetry; Field Theories in Higher Dimensions; Sigma Models; NONLINEAR SIGMA-MODELS; DIMENSIONAL REGULARIZATION; CONFORMAL-INVARIANCE; LOOP CALCULATIONS; MASSLESS FIELDS; CURVED SPACE; PARTICLE; REPRESENTATIONS; LAGRANGIANS; INTEGRALS;
D O I
10.1007/JHEP12(2012)113
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the one loop effective action for a class of higher spin fields by using a first-quantized description. The latter is obtained by considering spinning particles, characterized by an extended local supersymmetry on the worldline, that can propagate consistently on conformally flat spaces. The gauge fixing procedure for calculating the worldline path integral on a loop is delicate, as the gauge algebra contains nontrivial structure functions. Restricting the analysis on (A)dS backgrounds simplifies the gauge fixing procedure, and allows us to produce a useful representation of the one loop effective action. In particular, we extract the first few heat kernel coefficients for arbitrary even spacetime dimension D and for spin S identified by a curvature tensor with the symmetries of a rectangular Young tableau of D/2 rows and [S] columns.
引用
收藏
页数:27
相关论文
共 66 条
[1]  
[Anonymous], hep-th/0108192
[2]  
[Anonymous], HEPTH0503128
[3]  
[Anonymous], 2006, Cambridge Monographs on Mathematical Physics, DOI [DOI 10.1017/CBO9780511535031, 10.1017/CBO9780511535031]
[4]  
[Anonymous], HEPTH0409068
[5]  
[Anonymous], ARXIV11124285
[6]   JACOBI-POLYNOMIALS ASSOCIATED WITH SELBERG INTEGRALS [J].
AOMOTO, K .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (02) :545-549
[7]   Dimensional regularization of nonlinear sigma models on a finite time interval [J].
Bastianelli, F ;
Corradini, O ;
van Nieuwenhuizen, P .
PHYSICS LETTERS B, 2000, 494 (1-2) :161-167
[8]   Mode regularization, time slicing, Weyl ordering, and phase space path integrals for quantum-mechanical nonlinear sigma models [J].
Bastianelli, F ;
Schalm, K ;
van Nieuwenhuizen, P .
PHYSICAL REVIEW D, 1998, 58 (04)
[9]   THE PATH INTEGRAL FOR A PARTICLE IN CURVED SPACES AND WEYL ANOMALIES [J].
BASTIANELLI, F .
NUCLEAR PHYSICS B, 1992, 376 (01) :113-126
[10]   Mode regularization of the configuration space path integral in curved space [J].
Bastianelli, F ;
Corradini, O .
PHYSICAL REVIEW D, 1999, 60 (04)