Inference of high-resolution trajectories in single-cell RNA-seq data by using RNA velocity

被引:27
作者
Zhang, Ziqi [1 ]
Zhang, Xiuwei [1 ]
机构
[1] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA
来源
CELL REPORTS METHODS | 2021年 / 1卷 / 06期
基金
美国国家科学基金会;
关键词
EXPRESSION DEFINES; GRANULE CELLS; ALPHA-CAMKII; DYNAMICS; GRAPH;
D O I
10.1016/j.crmeth.2021.100095
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Trajectory inference (TI) methods infer cell developmental trajectory from single-cell RNA sequencing data. Current TI methods can be categorized into those using RNA velocity information and those using only single-cell gene expression data. The latter type of methods are restricted to certain trajectory structures, and cannot determine cell developmental direction. Recently proposed TI methods using RNA velocity information have limited accuracy. We present CellPath, a method that infers cell trajectories by integrating single-cell gene expression and RNA velocity information. CellPath overcomes the restrictions of TI methods that do not use RNA velocity information: it can find multiple high-resolution trajectories without constraints on the trajectory structure, and can automatically detect the direction of each trajectory path. We evaluate CellPath on both real and simulated datasets and show that CellPath finds more accurate and detailed trajectories than the state-of-the-art TI methods using or not using RNA velocity information.
引用
收藏
页数:23
相关论文
共 57 条
[1]  
Alexa Adrian, 2017, Bioconductor
[2]   Characterizing and Mining the Citation Graph of the Computer Science Literature [J].
An, Yuan ;
Janssen, Jeannette ;
Milios, Evangelos E. .
KNOWLEDGE AND INFORMATION SYSTEMS, 2004, 6 (06) :664-678
[3]  
[Anonymous], 1959, NUMERISCHE MATH, DOI DOI 10.1007/BF01386390
[4]   Conditional Deletion of α-CaMKII Impairs Integration of Adult-Generated Granule Cells into Dentate Gyrus Circuits and Hippocampus-Dependent Learning [J].
Arruda-Carvalho, Maithe ;
Restivo, Leonardo ;
Guskjolen, Axel ;
Epp, Jonathan R. ;
Elgersma, Ype ;
Josselyn, Sheena A. ;
Frankland, Paul W. .
JOURNAL OF NEUROSCIENCE, 2014, 34 (36) :11919-11928
[5]   A Single-Cell RNA Sequencing Study Reveals Cellular and Molecular Dynamics of the Hippocampal Neurogenic Niche [J].
Artegiani, Benedetta ;
Lyubimova, Anna ;
Muraro, Mauro ;
van Es, Johan H. ;
van Oudenaarden, Alexander ;
Clevers, Hans .
CELL REPORTS, 2017, 21 (11) :3271-3284
[6]  
Atta L., 2021, VELOVIZ RNA VELOCITY, DOI [10.1101/2F2021.01.28.425293, DOI 10.1101/2F2021.01.28.425293]
[7]   MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions [J].
Baran, Yael ;
Bercovich, Akhiad ;
Sebe-Pedros, Arnau ;
Lubling, Yaniv ;
Giladi, Amir ;
Chomsky, Elad ;
Meir, Zohar ;
Hoichman, Michael ;
Lifshitz, Aviezer ;
Tanay, Amos .
GENOME BIOLOGY, 2019, 20 (01)
[8]   Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis [J].
Bastidas-Ponce, Aimee ;
Tritschler, Sophie ;
Dony, Leander ;
Scheibner, Katharina ;
Tarquis-Medina, Marta ;
Salinno, Ciro ;
Schirge, Silvia ;
Burtscher, Ingo ;
Boettcher, Anika ;
Theis, Fabian J. ;
Lickert, Heiko ;
Bakhti, Mostafa .
DEVELOPMENT, 2019, 146 (12)
[9]   Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells [J].
Bechard, Matthew E. ;
Bankaitis, Eric D. ;
Hipkens, Susan B. ;
Ustione, Alessandro ;
Piston, David W. ;
Yang, Yu-Ping ;
Magnuson, Mark A. ;
Wright, Christopher V. E. .
GENES & DEVELOPMENT, 2016, 30 (16) :1852-1865
[10]  
Bergen V., 2021, MOL SYST BIOL, V17, DOI [10.15252/2Fmsb.202110282, DOI 10.15252/2FMSB.202110282]