Extensions of Brunn-Minkowski's inequality to multiple matrices

被引:1
作者
Li, Yongtao [1 ]
Feng, Lihua [2 ]
机构
[1] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
[2] Cent South Univ, Sch Math & Stat, New Campus, Changsha 410083, Hunan, Peoples R China
关键词
Positive semidefinite; Determinantal inequality; Brunn-Minkowski inequality; Numerical range in a sector;
D O I
10.1016/j.laa.2020.05.337
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2007, Yuan and Leng gave a generalization of Ky Fan's determinantal inequality, which is a refinement of the fundamental Brunn-Minkowski inequality (det (A + B))(1)(/n) >= (det A)(1/n) + (det B)(1/n), where A and B are positive sernidefinite matrices. In this paper, we first give an extension of Yuan-Leng's result to multiple positive definite matrices, and we further extend the result to a larger class of matrices whose numerical ranges are contained in a sector. Our result improves a recent result of Liu (2016) [16]. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:91 / 100
页数:10
相关论文
共 25 条
[1]  
Beckenbach E., 1961, Inequalities
[2]  
Bergstrm H., 1949, P ELFT SKAND MAT TRO, P264
[3]  
Bhatia R, 2007, PRINC SER APPL MATH, P1
[4]   Extensions of Fischer's inequality [J].
Choi, Daeshik ;
Tam, Tin-Yau ;
Zhang, Pingping .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 569 :311-322
[5]   More Generalizations of Hartfiel's Inequality and the Brunn-Minkowski Inequality [J].
Dong, Sheng ;
Wang, Qing-Wen .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (01) :21-29
[6]  
Fan K., 1955, Proc. Cambridge Philos. Soc., V51, P414
[7]   On the properties of accretive-dissipative matrices [J].
George, A ;
Ikramov, KD .
MATHEMATICAL NOTES, 2005, 77 (5-6) :767-776
[8]   Norm inequalities involving accretive-dissipative 2 x 2 block matrices [J].
Gumus, Ibrahim Halil ;
Hirzallah, Omar ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 528 :76-93
[9]  
HARTFIEL DJ, 1973, P AM MATH SOC, V41, P463
[10]   APPLICATIONS OF AN INEQUALITY FOR SCHUR COMPLEMENT [J].
HAYNSWORTH, EV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 24 (03) :512-+