Molecular basis of resistance to azole antifungals

被引:372
作者
Lupetti, A
Danesi, R
Campa, M
Del Tacca, M
Kelly, S
机构
[1] Univ Pisa, Dept Expt Pathol Med Biotechnol Infect Dis & Epid, I-56127 Pisa, Italy
[2] Univ Pisa, Div Pharmacol & Chemotherapy, Dept Oncol Transplants & Adv Technol Med, I-56126 Pisa, Italy
[3] Univ Wales, Wolfson Lab Biodivers P450, Inst Biol Sci, Aberystwyth SY23 3DA, Dyfed, Wales
关键词
D O I
10.1016/S1471-4914(02)02280-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The increased incidence of invasive mycoses and the emerging problem of antifungal drug resistance has prompted investigations of the underlying molecular mechanisms, particularly for the azole compounds central to current therapy. The target site for the azoles is the ERG11 gene product, the cytochrome P450 lanosterol 14alpha-demethylase, which is part of the ergosterol biosynthetic pathway. The resulting ergosterol depletion renders fungal cells vulnerable to further membrane damage. Development of azole resistance in fungi may occur through increased levels of the cellular target, upregulation of genes controlling drug efflux, alterations in sterol synthesis and decreased affinity of azoles for the cellular target. Here, we review the adaptative changes in fungi, in particular Candida albicans, in response to inhibitors of ergosterol biosynthesis. The molecular mechanisms of azole resistance might help in devising more effective antifungal therapies.
引用
收藏
页码:76 / 81
页数:6
相关论文
共 58 条
[1]   Genome-wide expression patterns in Saccharomyces cerevisiae:: Comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol [J].
Bammert, GF ;
Fostel, JM .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2000, 44 (05) :1255-1265
[2]   Experimental induction of fluconazole resistance in Candida tropicalis ATCC 750 [J].
Barchiesi, F ;
Calabrese, D ;
Sanglard, D ;
Di Francesco, LF ;
Caselli, F ;
Giannini, D ;
Giacometti, A ;
Gavaudan, S ;
Scalise, G .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2000, 44 (06) :1578-1584
[3]   OXA1, A SACCHAROMYCES-CEREVISIAE NUCLEAR GENE WHOSE SEQUENCE IS CONSERVED FROM PROKARYOTES TO EUKARYOTES CONTROLS CYTOCHROME-OXIDASE BIOGENESIS [J].
BONNEFOY, N ;
CHALVET, F ;
HAMEL, P ;
SLONIMSKI, PP ;
DUJARDIN, G .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 239 (02) :201-212
[4]   MODELING CYTOCHROME-P450 14-ALPHA DEMETHYLASE (CANDIDA-ALBICANS) FROM P450CAM [J].
BOSCOTT, PE ;
GRANT, GH .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1994, 12 (03) :185-192
[5]   In-vivo selection of an azole-resistant petite mutant of Candida glabrata [J].
Bouchara, JP ;
Zouhair, R ;
Le Boudouil, S ;
Renier, G ;
Filmon, R ;
Chabasse, D ;
Hallet, JN ;
Defontaine, A .
JOURNAL OF MEDICAL MICROBIOLOGY, 2000, 49 (11) :977-984
[6]   Non-albicans oral candidosis in HIV-positive patients [J].
Cartledge, JD ;
Midgley, J ;
Gazzard, BG .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 1999, 43 (03) :419-422
[7]   Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray [J].
De Backer, MD ;
Ilyina, T ;
Ma, XJ ;
Vandoninck, S ;
Luyten, WHML ;
Vanden Bossche, H .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2001, 45 (06) :1660-1670
[8]   In-vitro resistance to azoles associated with mitochondrial DNA deficiency in Candida glabrata [J].
Defontaine, A ;
Bouchara, JP ;
Declerk, P ;
Planchenault, C ;
Chabasse, D ;
Hallet, JN .
JOURNAL OF MEDICAL MICROBIOLOGY, 1999, 48 (07) :663-670
[9]   F-19 NUCLEAR-MAGNETIC-RESONANCE STUDY OF FLUOROPYRIMIDINE METABOLISM IN STRAINS OF CANDIDA-GLABRATA WITH SPECIFIC DEFECTS IN PYRIMIDINE METABOLISM [J].
FASOLI, MOF ;
KERRIDGE, D ;
MORRIS, PG ;
TOROSANTUCCI, A .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1990, 34 (10) :1996-2006
[10]   Multiple amino acid substitutions in lanosterol 14α-demethylase contribute to azole resistance in Candida albicans [J].
Favre, B ;
Didmon, M ;
Ryder, NS .
MICROBIOLOGY-SGM, 1999, 145 :2715-2725