optimal stopping;
Levy processes;
one-sided solutions;
polynomial rewards;
AMERICAN;
OPTIONS;
D O I:
10.1137/15M1032144
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
An explicit solution of an infinite horizon optimal stopping problem for a Levy process with a nonmonotonic reward function is given, in terms of the overall supremum of the process, when the solution of the problem is one-sided. The results are obtained via the consideration of the generalized averaging function associated with the problem. The method, initially tailored to handle polynomial rewards, has a wide range of applications, as shown in the examples: optimal stopping problems for general polynomial rewards of degree two and three for spectrally negative processes, a quartic polynomial reward and Kou's process, a portfolio of call options, and a trigonometric payoff function. These last two examples are given for general Levy processes.
机构:
Univ Paris Est Marne la Vallee, INRIA, LAMA, UMR,CNRS,UPEMLV,UPEC,Lab Anal & Math Appl, Paris, FranceUniv Paris Est Marne la Vallee, INRIA, LAMA, UMR,CNRS,UPEMLV,UPEC,Lab Anal & Math Appl, Paris, France
Lamberton, Damien
Zervos, Mihail
论文数: 0引用数: 0
h-index: 0
机构:
London Sch Econ, Dept Math, London, EnglandUniv Paris Est Marne la Vallee, INRIA, LAMA, UMR,CNRS,UPEMLV,UPEC,Lab Anal & Math Appl, Paris, France
Zervos, Mihail
ELECTRONIC JOURNAL OF PROBABILITY,
2013,
18
: 1
-
49
机构:
Univ Paris Est Marne la Vallee, INRIA, LAMA, UMR,CNRS,UPEMLV,UPEC,Lab Anal & Math Appl, Paris, FranceUniv Paris Est Marne la Vallee, INRIA, LAMA, UMR,CNRS,UPEMLV,UPEC,Lab Anal & Math Appl, Paris, France
Lamberton, Damien
Zervos, Mihail
论文数: 0引用数: 0
h-index: 0
机构:
London Sch Econ, Dept Math, London, EnglandUniv Paris Est Marne la Vallee, INRIA, LAMA, UMR,CNRS,UPEMLV,UPEC,Lab Anal & Math Appl, Paris, France
Zervos, Mihail
ELECTRONIC JOURNAL OF PROBABILITY,
2013,
18
: 1
-
49