Rigidity of ball-polyhedra in Euclidean 3-space

被引:11
作者
Bezdek, K [1 ]
Naszódi, M [1 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会; 匈牙利科学研究基金会;
关键词
ball-polyhedra; rigidity; duality; Cauchy's theorem;
D O I
10.1016/j.ejc.2004.08.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce ball-polyhedra as finite intersections of congruent balls in Euclidean 3-space. We define their duals and study their face-lattices. Our main result is an analogue of Cauchy's rigidity theorem. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:255 / 268
页数:14
相关论文
共 10 条
[1]  
Aigner M., 2014, Proofs from the Book
[2]  
Bezdek K, 2002, J REINE ANGEW MATH, V553, P221
[3]  
Connelly R., 1993, Handbook of Convex Geometry, P223
[4]  
Gluck H., 1975, LECT NOTES MATH, P225, DOI DOI 10.1007/BFB0066118
[5]  
Heppes A., 1956, MAT LAPOK, V7, P108
[6]   Rigidity of certain polyhedra in R3 [J].
Rodríguez, L ;
Rosenberg, H .
COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (03) :478-503
[7]   REULEAUX POLYTOPES [J].
SALLEE, GT .
MATHEMATIKA, 1970, 17 (34) :315-&
[8]  
SCHLENKER JM, 2003, UNPUB RIGIDITY CRITE, P1
[9]  
WHITELEY W, 1988, T AM MATH SOC, V306, P115
[10]   INFINITESIMALLY RIGID POLYHEDRA .1. STATICS OF FRAMEWORKS [J].
WHITELEY, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 285 (02) :431-465