Variation diminishing-type properties for multivariate sampling Kantorovich operators

被引:12
作者
Angeloni, Laura [1 ]
Costarelli, Danilo [1 ]
Seracini, Marco [1 ]
Vinti, Gianluca [1 ]
Zampogni, Luca [1 ]
机构
[1] Univ Perugia, Dept Math & Comp Sci, Via Vanvitelli 1, I-06123 Perugia, Italy
来源
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA | 2020年 / 13卷 / 04期
关键词
Multivariate generalized sampling Kantorovich series; Variation-diminishing type property; Averaged type kernel; Smoothing in digital image processing; Product kernel; INTEGRAL-OPERATORS; CONVERGENCE; APPROXIMATION; GAUGE;
D O I
10.1007/s40574-020-00256-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish a variation-diminishing type estimate for the multivariate Kantorovich sampling operators with respect to the concept of multidimensional variation introduced by Tonelli. A sharper estimate can be achieved when step functions with compact support (digital images) are considered. Several examples of kernels have been presented.
引用
收藏
页码:595 / 605
页数:11
相关论文
共 50 条
[31]   Convergence of Perturbed Sampling Kantorovich Operators in Modular Spaces [J].
Costarelli, Danilo ;
De Angelis, Eleonora ;
Vinti, Gianluca .
RESULTS IN MATHEMATICS, 2023, 78 (06)
[32]   On statistical approximation properties of Kantorovich type q-Bernstein operators [J].
Dalmanoglu, Oezge ;
Dogru, Oguen .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) :760-771
[33]   Approximation properties of the modification of Kantorovich type q-Szasz operators [J].
Cai, Qing-Bo ;
Zeng, Xiao-Ming ;
Cui, Zhenlu .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (01) :176-187
[34]   Convergence of sampling Kantorovich operators in modular spaces with applications [J].
Costarelli, Danilo ;
Vinti, Gianluca .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (02) :1115-1136
[35]   APPROXIMATION BY MULTIVARIATE BASKAKOV-KANTOROVICH OPERATORS IN ORLICZ SPACES [J].
Han, Ling-Xiong ;
Li, Wen-Hui ;
Qi, Feng .
ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02) :721-738
[36]   Kantorovich-type operators associated with a variant of Jain operators [J].
Agratini, Octavian ;
Dogru, Ogun .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (02) :279-288
[37]   Approximation by Sampling-Type Nonlinear Discrete Operators in φ-Variation [J].
Aslan, Ismail .
FILOMAT, 2021, 35 (08) :2731-2746
[38]   Bézier Type Kantorovich q-Baskakov Operators via Wavelets and Some Approximation Properties [J].
Savas, Ekrem ;
Mursaleen, Mohammad .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (05)
[39]   The Bezier variant of Kantorovich type λ-Bernstein operators [J].
Cai, Qing-Bo .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[40]   Convergence Results for Nonlinear Sampling Kantorovich Operators in Modular Spaces [J].
Costarelli, Danilo ;
Natale, Mariarosaria ;
Vinti, Gianluca .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (12) :1276-1299