Variation diminishing-type properties for multivariate sampling Kantorovich operators

被引:12
|
作者
Angeloni, Laura [1 ]
Costarelli, Danilo [1 ]
Seracini, Marco [1 ]
Vinti, Gianluca [1 ]
Zampogni, Luca [1 ]
机构
[1] Univ Perugia, Dept Math & Comp Sci, Via Vanvitelli 1, I-06123 Perugia, Italy
来源
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA | 2020年 / 13卷 / 04期
关键词
Multivariate generalized sampling Kantorovich series; Variation-diminishing type property; Averaged type kernel; Smoothing in digital image processing; Product kernel; INTEGRAL-OPERATORS; CONVERGENCE; APPROXIMATION; GAUGE;
D O I
10.1007/s40574-020-00256-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish a variation-diminishing type estimate for the multivariate Kantorovich sampling operators with respect to the concept of multidimensional variation introduced by Tonelli. A sharper estimate can be achieved when step functions with compact support (digital images) are considered. Several examples of kernels have been presented.
引用
收藏
页码:595 / 605
页数:11
相关论文
共 50 条
  • [1] Variation diminishing-type properties for multivariate sampling Kantorovich operators
    Laura Angeloni
    Danilo Costarelli
    Marco Seracini
    Gianluca Vinti
    Luca Zampogni
    Bollettino dell'Unione Matematica Italiana, 2020, 13 : 595 - 605
  • [2] Nonlinear multivariate sampling Kantorovich operators: quantitative estimates in functional spaces
    Cetin, Nursel
    Costarelli, Danilo
    Natale, Mariarosaria
    Vinti, Gianluca
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2022, 15 : 12 - 25
  • [3] Multivariate sampling Kantorovich operators: quantitative estimates in Orlicz spaces
    Angeloni, Laura
    Cetin, Nursel
    Costarelli, Danilo
    Sambucini, Anna rita
    Vinti, Gianluca
    CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2021, 4 (02): : 229 - 241
  • [4] Estimates in variation for multivariate sampling-type operators
    Angeloni, Laura
    Vinti, Gianluca
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2021, 14 : 1 - 9
  • [6] Quantitative estimates for sampling type operators with respect to the Jordan variation
    Angeloni, Laura
    Costarelli, Danilo
    Vinti, Gianluca
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (02) : 269 - 284
  • [7] Asymptotic formulae for multivariate Kantorovich type generalized sampling series
    Bardaro, Carlo
    Mantellini, Ilaria
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (07) : 1247 - 1258
  • [8] Quantitative Estimates for Nonlinear Sampling Kantorovich Operators
    Cetin, Nursel
    Costarelli, Danilo
    Vinti, Gianluca
    RESULTS IN MATHEMATICS, 2021, 76 (02)
  • [9] DEGREE OF APPROXIMATION FOR NONLINEAR MULTIVARIATE SAMPLING KANTOROVICH OPERATORS ON SOME FUNCTIONS SPACES
    Costarelli, Danilo
    Vinti, Gianluca
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (08) : 964 - 990
  • [10] A Characterization of the Absolute Continuity in Terms of Convergence in Variation for the Sampling Kantorovich Operators
    Angeloni, Laura
    Costarelli, Danilo
    Vinti, Gianluca
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (02)