Bayesian Probabilistic Analysis of DEER Spectroscopy Data Using Parametric Distance Distribution Models

被引:17
|
作者
Sweger, Sarah R. [1 ]
Pribitzer, Stephan [1 ]
Stoll, Stefan [1 ]
机构
[1] Univ Washington, Dept Chem, Seattle, WA 98195 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2020年 / 124卷 / 30期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
ELECTRON-SPIN ECHO; TIKHONOV REGULARIZATION; RESONANCE; ELDOR;
D O I
10.1021/acs.jpca.0c05026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Double electron-electron resonance (DEER) spectroscopy measures distance distributions between spin labels in proteins, yielding important structural and energetic information about conformational landscapes. Analysis of an experimental DEER signal in terms of a distance distribution is a nontrivial task due to the ill-posed nature of the underlying mathematical inversion problem. This work introduces a Bayesian probabilistic inference approach to analyze DEER data, using a multi-Gauss mixture model for the distance distribution. The method uses Markov chain Monte Carlo (MCMC) sampling to determine a posterior probability distribution over model parameter space. This distribution contains all the information available from the data, including a full quantification of the uncertainty about the parameters. The corresponding uncertainty about the distance distribution is captured via an ensemble of posterior predictive distributions. Several synthetic examples illustrate the method. An experimental example shows the importance of model checking and comparison using residual analysis and Bayes factors. Overall, the Bayesian approach allows for more robust inference about protein conformations from DEER spectroscopy.
引用
收藏
页码:6193 / 6202
页数:10
相关论文
共 50 条
  • [1] Bayesian Probabilistic Inference of Nonparametric Distance Distributions in DEER Spectroscopy
    Sweger, Sarah R.
    Cheung, Julian C.
    Zha, Lukas
    Pribitzer, Stephan
    Stoll, Stefan
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (41): : 9071 - 9081
  • [2] Probabilistic inference of distance distributions in DEER spectroscopy
    Pribitzer, Stephan
    Sweger, Sarah R.
    Zha, Lukas
    Stoll, Stefan
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 407A - 407A
  • [3] Analysis of Electrochemical Impedance Spectroscopy Data Using the Distribution of Relaxation Times: A Bayesian and Hierarchical Bayesian Approach
    Ciucci, Francesco
    Chen, Chi
    ELECTROCHIMICA ACTA, 2015, 167 : 439 - 454
  • [4] Bayesian Statistical Methods in the Analysis of DEER Data
    Edwards, Thomas H.
    Stoll, Stefan
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 153A - 153A
  • [5] Bayesian estimation of reliability using time-to-failure distribution of parametric degradation models
    Siju, K. C.
    Kumar, M.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (09) : 1717 - 1748
  • [6] Accurate Distance Constraints for RNA Structures Using Deer Spectroscopy
    DeRose, Victoria J.
    Kim, Nak-Kyoon
    Bowman, Michael K.
    Green, Brandon
    Unger, Adam
    Stoll, Stefan
    Britt, R. David
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 264A - 264A
  • [7] Combining data and physical models for probabilistic analysis: A Bayesian Augmented Space Learning perspective
    Hong, Fangqi
    Wei, Pengfei
    Song, Jingwen
    Faes, Matthias G. R.
    Valdebenito, Marcos A.
    Beer, Michael
    PROBABILISTIC ENGINEERING MECHANICS, 2023, 73
  • [8] Bayesian Meta-Analysis for Binary Data and Prior Distribution on Models
    Negrin-Hernandez, Miguel-Angel
    Martel-Escobar, Maria
    Vazquez-Polo, Francisco-Jose
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (02) : 1 - 18
  • [9] Bayesian and non-Bayesian probabilistic models for medical image analysis
    Bromiley, PA
    Thacker, NA
    Scott, MLJ
    Pokric, M
    Lacey, AJ
    Cootes, TF
    IMAGE AND VISION COMPUTING, 2003, 21 (10) : 851 - 864
  • [10] Determining pair distance distribution function from SAXS data using parametric functionals
    Liu, Haiguang
    Zwart, Peter H.
    JOURNAL OF STRUCTURAL BIOLOGY, 2012, 180 (01) : 226 - 234