Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential

被引:478
作者
Wang, Mengfan [1 ]
Liu, Sisi [1 ]
Qian, Tao [1 ]
Liul, Jie [1 ]
Zhou, Jinqiu [1 ]
Ji, Haoqing [1 ]
Xiong, Jie [2 ]
Zhong, Jun [3 ]
Yan, Chenglin [1 ]
机构
[1] Soochow Univ, Coll Energy, Key Lab Adv Carbon Mat & Wearable Energy Technol, Suzhou 215006, Peoples R China
[2] Univ Elect Sci & Technol China, Chengdu 610054, Sichuan, Peoples R China
[3] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
NITROGEN; REDUCTION; CATALYST;
D O I
10.1038/s41467-018-08120-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ambient electrochemical N-2 reduction is emerging as a highly promising alternative to the Haber-Bosch process but is typically hampered by a high reaction barrier and competing hydrogen evolution, leading to an extremely low Faradaic efficiency. Here, we demonstrate that under ambient conditions, a single-atom catalyst, iron on nitrogen-doped carbon, could positively shift the ammonia synthesis process to an onset potential of 0.193 V, enabling a dramatically enhanced Faradaic efficiency of 56.55%. The only doublet coupling representing (NH4+)-N-15 in an isotopic labeling experiment confirms reliable NH3 production data. Molecular dynamics simulations suggest efficient N-2 access to the single-atom iron with only a small energy barrier, which benefits preferential N-2 adsorption instead of H adsorption via a strong exothermic process, as further confirmed by first-principle calculations. The released energy helps promote the following process and the reaction bottleneck, which is widely considered to be the first hydrogenation step, is successfully overcome.
引用
收藏
页数:8
相关论文
共 26 条
[1]   Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon [J].
Ali, Muataz ;
Zhou, Fengling ;
Chen, Kun ;
Kotzur, Christopher ;
Xiao, Changlong ;
Bourgeois, Laure ;
Zhang, Xinyi ;
MacFarlane, Douglas R. .
NATURE COMMUNICATIONS, 2016, 7
[2]  
[Anonymous], 2017, ANGEW CHEM, DOI [10.1002/ange.201702473, DOI 10.1002/ANGE.201702473]
[3]   Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle [J].
Bao, Di ;
Zhang, Qi ;
Meng, Fan-Lu ;
Zhong, Hai-Xia ;
Shi, Miao-Miao ;
Zhang, Yu ;
Yan, Jun-Min ;
Jiang, Qing ;
Zhang, Xin-Bo .
ADVANCED MATERIALS, 2017, 29 (03)
[4]   How a century of ammonia synthesis changed the world [J].
Erisman, Jan Willem ;
Sutton, Mark A. ;
Galloway, James ;
Klimont, Zbigniew ;
Winiwarter, Wilfried .
NATURE GEOSCIENCE, 2008, 1 (10) :636-639
[5]   Ternary intermetallic LaCoSi as a catalyst for N2 activation [J].
Gong, Yutong ;
Wu, Jiazhen ;
Kitano, Masaaki ;
Wang, Junjie ;
Ye, Tian-Nan ;
Li, Jiang ;
Kobayashi, Yasukazu ;
Kishida, Kazuhisa ;
Abe, Hitoshi ;
Niwa, Yasuhiro ;
Yang, Hongsheng ;
Tada, Tomofumi ;
Hosono, Hideo .
NATURE CATALYSIS, 2018, 1 (03) :178-185
[6]   An Earth-system perspective of the global nitrogen cycle [J].
Gruber, Nicolas ;
Galloway, James N. .
NATURE, 2008, 451 (7176) :293-296
[7]   Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell [J].
Kordali, V ;
Kyriacou, G ;
Lambrou, C .
CHEMICAL COMMUNICATIONS, 2000, (17) :1673-1674
[8]   Progress in the Electrochemical Synthesis of Ammonia [J].
Kyriakou, V. ;
Garagounis, I. ;
Vasileiou, E. ;
Vourros, A. ;
Stoukides, M. .
CATALYSIS TODAY, 2017, 286 :2-13
[9]   Nitrogen fixation and reduction at boron [J].
Legare, Marc-Andre ;
Belanger-Chabot, Guillaume ;
Dewhurst, Rian D. ;
Welz, Eileen ;
Krummenacher, Ivo ;
Engels, Bernd ;
Braunschweig, Holger .
SCIENCE, 2018, 359 (6378) :896-899
[10]   Amorphizing of Au Nanoparticles by CeOx-RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions [J].
Li, Si-Jia ;
Bao, Di ;
Shi, Miao-Miao ;
Wulan, Ba-Ri ;
Yan, Jun-Min ;
Jiang, Qing .
ADVANCED MATERIALS, 2017, 29 (33)