Modeling the motion of microcapsules on compliant polymeric surfaces

被引:88
作者
Alexeev, A [1 ]
Verberg, R [1 ]
Balazs, AC [1 ]
机构
[1] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA
关键词
D O I
10.1021/ma0516135
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
By integrating mesoscale models for hydrodynamics and micromechanics, we examine the fluid-driven motion of microcapsules on compliant surfaces. The capsules, modeled as fluid-filled elastic shells, represent polymeric microcapsules or biological cells. We examine the motion of these capsules on flat, mechanically uniform surfaces, mechanically patterned surfaces that contain alternating regions of hard and soft domains, and topologically patterned surfaces, i.e., a corrugated substrate and a substrate that encompasses a regular array of compliant posts. We isolate conditions where the mechanically and topographically patterned surfaces can transmit "stop" and "go" instructions, causing the capsules to halt at specific locations on the substrate, and with an increase in the imposed flow velocity, to resume moving. In the case of the corrugated surfaces, varying the size of the asperities permits significant control over the translational velocity of a capsule for a given shear rate. For surfaces containing regular arrays of compliant posts, the substrates also affect the capsules' gait, causing them to "crawl", "walk", or "jump". The latter behavior could promote the intermixing of reactants that are encapsulated within the microcapsules. These topographically patterned surfaces can also be utilized to sort capsules accordingly their size. Such control over capsule dynamics can enable the fabrication of arrays of mobile microreactors and facilitate various biological assays.
引用
收藏
页码:10244 / 10260
页数:17
相关论文
共 84 条
[1]   Dynamics of vesicles in a wall-bounded shear flow [J].
Abkarian, M ;
Viallat, A .
BIOPHYSICAL JOURNAL, 2005, 89 (02) :1055-1066
[2]   Tank treading and unbinding of deformable vesicles in shear flow: Determination of the lift force [J].
Abkarian, M ;
Lartigue, C ;
Viallat, A .
PHYSICAL REVIEW LETTERS, 2002, 88 (06) :4
[3]   Polyelectrolyte multilayer capsule permeability control [J].
Antipov, AA ;
Sukhorukov, GB ;
Leporatti, S ;
Radtchenko, IL ;
Donath, E ;
Möhwald, H .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2002, 198 :535-541
[4]   Influence of the ionic strength on the polyelectrolyte multilayers' permeability [J].
Antipov, AA ;
Sukhorukov, GB ;
Möhwald, H .
LANGMUIR, 2003, 19 (06) :2444-2448
[5]   TEST OF UNIVERSALITY FOR 3-DIMENSIONAL MODELS OF MECHANICAL BREAKDOWN IN DISORDERED SOLIDS [J].
ARBABI, S ;
SAHIMI, M .
PHYSICAL REVIEW B, 1990, 41 (01) :772-775
[6]   Interactions between silica surfaces coated by polyelectrolyte multilayers in aqueous environment: comparison between precursor and multilayer regime [J].
Bosio, V ;
Dubreuil, F ;
Bogdanovic, G ;
Fery, A .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2004, 243 (1-3) :147-155
[7]   Momentum transfer of a Boltzmann-lattice fluid with boundaries [J].
Bouzidi, M ;
Firdaouss, M ;
Lallemand, P .
PHYSICS OF FLUIDS, 2001, 13 (11) :3452-3459
[8]   An integrated nanoliter DNA analysis device [J].
Burns, MA ;
Johnson, BN ;
Brahmasandra, SN ;
Handique, K ;
Webster, JR ;
Krishnan, M ;
Sammarco, TS ;
Man, PM ;
Jones, D ;
Heldsinger, D ;
Mastrangelo, CH ;
Burke, DT .
SCIENCE, 1998, 282 (5388) :484-487
[9]   Newtonian fluid meets an elastic solid: Coupling lattice Boltzmann and lattice-spring models [J].
Buxton, GA ;
Verberg, R ;
Jasnow, D ;
Balazs, AC .
PHYSICAL REVIEW E, 2005, 71 (05)
[10]   Lattice spring model of filled polymers and nanocomposites [J].
Buxton, GA ;
Balazs, AC .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (16) :7649-7658