G-compactness and groups

被引:16
作者
Gismatullin, Jakub [1 ]
Newelski, Ludomir [1 ]
机构
[1] Uniwersytetu Wroclawskiego, Inst Matemat, PL-50384 Wroclaw, Poland
关键词
strong types; G-compactness; automorphisms groups;
D O I
10.1007/s00153-008-0092-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lascar described E(KP) as a composition of E(L) and the topological closure of EL (Casanovas et al. in J Math Log 1(2): 305 - 319). We generalize this result to some other pairs of equivalence relations. Motivated by an attempt to construct a new example of a non-G-compact theory, we consider the following example. Assume G is a group definable in a structure M. We define a structure M' consisting of M and X as two sorts, where X is an affine copy of G and in M' we have the structure of M and the action of G on X. We prove that the Lascar group of M' is a semi-direct product of the Lascar group of M and G/G(L). We discuss the relationship between G-compactness of M and M'. This example may yield new examples of non-G-compact theories.
引用
收藏
页码:479 / 501
页数:23
相关论文
共 9 条
[1]  
Casanovas E., 2001, Journal of Mathematical Logic, V1, P305
[2]  
Cherlin G. L., 2003, ANN MATH STUDIES, V152
[3]  
HRUSHOVSKI E, 2008, J AMS IN PRESS
[4]  
Krupiriski K., 2002, Notre Dame Journal of Formal Logic, V43, P231, DOI 10.1305/ndjfl/1074396308
[5]   Hyperimaginaries and automorphism groups [J].
Lascar, D ;
Pillay, A .
JOURNAL OF SYMBOLIC LOGIC, 2001, 66 (01) :127-143
[6]  
Macdonald I. D., 1963, J LOND MATH SOC, V38, P419, DOI [10.1112/jlms/s1-38.1.419, DOI 10.1112/JLMS/S1-38.1.419]
[7]   The diameter of a Lascar strong type [J].
Newelski, L .
FUNDAMENTA MATHEMATICAE, 2003, 176 (02) :157-170
[8]  
PETRYKOWSKI M, 2007, WEAK GENERIC TYPES C, V2
[9]  
ZIEGLER M, 1991, LONDON MATH SOC LECT, V291, P279