MLAMBDA: a modified LAMBDA method for integer least-squares estimation

被引:309
作者
Chang, XW [1 ]
Yang, X [1 ]
Zhou, T [1 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2A7, Canada
关键词
integer least squares estimation; The LAMBDA method; Decorrelation; reduction; search; computational efficiency;
D O I
10.1007/s00190-005-0004-x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The least-squares ambiguity Decorrelation (LAMBDA) method has been widely used in GNSS for fixing integer ambiguities. It can also solve any integer least squares (ILS) problem arising from other applications. For real time applications with high dimensions, the computational speed is crucial. A modified LAMBDA (MLAMBDA) method is presented. Several strategies are proposed to reduce the computational complexity of the LAMBDA method. Numerical simulations show that MLAMBDA is (much) faster than LAMBDA. The relations between the LAMBDA method and some relevant methods in the information theory literature are pointed out when we introduce its main procedures.
引用
收藏
页码:552 / 565
页数:14
相关论文
共 26 条
  • [1] Closest point search in lattices
    Agrell, E
    Eriksson, T
    Vardy, A
    Zeger, K
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (08) : 2201 - 2214
  • [2] ON LOVASZ LATTICE REDUCTION AND THE NEAREST LATTICE POINT PROBLEM
    BABAI, L
    [J]. COMBINATORICA, 1986, 6 (01) : 1 - 13
  • [3] DEJONGE PJ, 1996, DELFT GEODETIC COMPU, V12
  • [4] FINCKE U, 1985, MATH COMPUT, V44, P463, DOI 10.1090/S0025-5718-1985-0777278-8
  • [5] Frei E., 1990, Manuscripta Geodaetica, V15, P325
  • [6] Golub G. H., 1996, MATRIX COMPUTATIONS
  • [7] Grafarend E, 2000, GPS Solut, V4, P31
  • [8] Hassibi A, 1998, IEEE T SIGNAL PROCES, V46, P2938, DOI 10.1109/78.726808
  • [9] Joosten P., 2002, GPS SOLUT, V6, P109
  • [10] LANDAU H, 1992, PROCEEDINGS OF ION GPS-92, P607