A note on compatibility for inference with missing data in the presence of auxiliary covariates

被引:0
作者
Daniels, Michael J. [1 ]
Luo, Xuan [1 ]
机构
[1] Univ Florida, Coll Liberal Arts & Sci, Dept Stat, 102 Griffin Floyd Hall,POB 118545, Gainesville, FL 32611 USA
基金
美国国家卫生研究院;
关键词
compatible models; ignorability; missingness; multiple imputation; uncongenial; MULTIPLE IMPUTATION; CLINICAL-TRIALS; IMPROVING EFFICIENCY; MODELS;
D O I
10.1002/sim.8025
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Imputation and inference (or analysis) models that cannot be true simultaneously are frequently used in practice when missing outcomes are present. In these situations, the conclusions can be misleading depending on how "different" the implicit inference model, induced by the imputation model, is from the inference model actually used. We introduce model-based compatibility (MBC) and compare two MBC approaches to a non-MBC approach and explore the inferential validity of the latter in a simple case. In addition, we evaluate more complex cases through a series of simulation studies. Overall, we recommend caution when making inferences using a non-MBC analysis and point out when the inferential "cost" is the largest.
引用
收藏
页码:1190 / 1199
页数:10
相关论文
共 20 条
  • [1] [Anonymous], 2004, Multiple imputation for nonresponse in surveys
  • [2] Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model
    Bartlett, Jonathan W.
    Seaman, Shaun R.
    White, Ian R.
    Carpenter, James R.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2015, 24 (04) : 462 - 487
  • [3] Multiple imputation was an efficient method for harmonizing the Mini-Mental State Examination with missing item-level data
    Burns, Richard A.
    Butterworth, Peter
    Kiely, Kim M.
    Bielak, Allison A. M.
    Luszcz, Mary A.
    Mitchell, Paul
    Christensen, Helen
    Von Sanden, Chwee
    Anstey, Kaarin J.
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2011, 64 (07) : 787 - 793
  • [4] Improving efficiency in clinical trials using auxiliary information: Application of a multi-state cure model
    Conlon, A. S. C.
    Taylor, J. M. G.
    Sargent, D. J.
    [J]. BIOMETRICS, 2015, 71 (02) : 460 - 468
  • [5] Fully Bayesian Inference under Ignorable Missingness in the Presence of Auxiliary Covariates
    Daniels, M. J.
    Wang, C.
    Marcus, B. H.
    [J]. BIOMETRICS, 2014, 70 (01) : 62 - 72
  • [6] Daniels MJ, 2008, MONOGR STAT APPL PRO, V109, P1
  • [7] Marginally specified logistic-normal models for longitudinal binary data
    Heagerty, PJ
    [J]. BIOMETRICS, 1999, 55 (03) : 688 - 698
  • [8] Heagerty PJ, 2000, STAT SCI, V15, P1
  • [9] Marginalized transition models and likelihood inference for longitudinal categorical data
    Heagerty, PJ
    [J]. BIOMETRICS, 2002, 58 (02) : 342 - 351
  • [10] Multiple imputation: current perspectives
    Kenward, Michael G.
    Carpenter, James
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (03) : 199 - 218