Nehari manifold for non-local elliptic operator with concave-convex nonlinearities and sign-changing weight functions

被引:43
作者
Goyal, Sarika [1 ]
Sreenadh, K. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2015年 / 125卷 / 04期
关键词
Non-local operator; p-fractional Laplacian; sign-changing weight functions; Nehari manifold; fibering maps; POSITIVE SOLUTIONS;
D O I
10.1007/s12044-015-0244-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the existence and multiplicity of non-negative solutions of the following p-fractional equation: integral-2 integral R-n|u(y)-u(x)|p-2(u(y)-u(x)) |x-y|n+pady =dh(x)|u|(q-1) u+b(x)|u|(r-1) u in Omega, where Omega is a bounded domain in with continuous boundary, p a parts per thousand yen 2, n > p alpha, alpha a (0, 1), 0 < q < p -1 < r < p (au) - 1 with p (au) = np(n - p alpha)(-1), lambda > 0 and h, b are sign-changing continuous functions. We show the existence and multiplicity of solutions by minimization on the suitable subset of Nehari manifold using the fibering maps. We find that there exists lambda (0) such that for lambda a (0, lambda (0)), it has at least two non-negative solutions.
引用
收藏
页码:545 / 558
页数:14
相关论文
共 47 条
[41]   Two Nontrivial Solutions for a Nonhomogeneous Quasilinear Elliptic System With Sign-Changing Weight Functions [J].
Qi, Wanting ;
Zhang, Xingyong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (12) :11836-11849
[42]   Multiplicity of solutions for a singular system involving the fractional p-q-Laplacian operator and sign-changing weight functions [J].
Chung, Nguyen Thanh ;
Ghanmi, Abdeljabbar .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2022, 41 (01) :167-187
[43]   Existence of Multiple Solutions for a Quasilinear Elliptic System Involving Sign-Changing Weight Functions and Variable Exponent [J].
Ying Chu ;
Libo Cheng ;
Jiahui Sun ;
Yi Cheng .
Mediterranean Journal of Mathematics, 2022, 19
[44]   Existence of multiple positive solutions for a truncated Kirchhoff-type system involving weight functions and concave-convex nonlinearities [J].
Lou, Qingjun ;
Qin, Yupeng .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[45]   Multiple positive solutions for nonlinear critical fractional elliptic equations involving sign-changing weight functions [J].
Quaas, Alexander ;
Xia, Aliang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03)
[46]   Multiple positive solutions for nonlinear critical fractional elliptic equations involving sign-changing weight functions [J].
Alexander Quaas ;
Aliang Xia .
Zeitschrift für angewandte Mathematik und Physik, 2016, 67
[47]   SUB-ELLIPTIC SYSTEMS INVOLVING CRITICAL HARDY-SOBOLEV EXPONENTS AND SIGN-CHANGING WEIGHT FUNCTIONS ON CARNOT GROUPS [J].
Zhang, Jinguo .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (02) :199-231