On Hamming Distance Distributions of Repeated-Root Cyclic Codes of Length 5ps Over Fp m + uFp m

被引:0
作者
Dinh, Hai Q. [1 ]
Nguyen, Bac T. [2 ,3 ]
Thi, Hiep L. [4 ]
Yamaka, Woraphon [5 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44240 USA
[2] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 550000, Vietnam
[3] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam
[4] Thu Dau Mot Univ, Fac Educ, Binh Duong 75100, Vietnam
[5] Chiang Mai Univ, Ctr Excellence Econometr, Chiang Mai 50200, Thailand
关键词
Constacyclic codes; cyclic codes; dual codes; chain rings; hamming distance; singleton bound; MDS codes; CONSTACYCLIC CODES; NEGACYCLIC CODES; 2P(S); 3P(S); Z(4);
D O I
10.1109/ACCESS.2022.3219498
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let $p\not =5$ be any odd prime. Using the algebraic structures of all cyclic codes of length $5p<^>{s}$ over the finite commutative chain ring ${\mathcal{ R}}=\mathbb F_{p<^>{m}}+u\mathbb F_{p<^>{m}}$ , in this paper, the exact values of Hamming distances of all cyclic codes of length $5p<^>{s}$ over $\cal R$ are established. As an application, we identify all maximum distance separable cyclic codes of length $5p<^>{s}$ .
引用
收藏
页码:119883 / 119904
页数:22
相关论文
共 45 条
[1]   On the generators of Z4 cyclic codes of length 2e [J].
Abualrub, T ;
Oehmke, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) :2126-2133
[2]   Constacyclic codes over F2 + uF2 [J].
Abualrub, Taher ;
Siap, Irfan .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2009, 346 (05) :520-529
[3]  
Al-Ashker MM, 2005, ARAB J SCI ENG, V30, P277
[4]  
Berman S.D., 1967, Kibernetika, vol, V3, P17
[5]   Cyclic codes over Z4 of oddly even length [J].
Blackford, T .
DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) :27-46
[6]   CONSTACYCLIC CODES OF LENGTH np8 OVER Fpm + uFpm [J].
Cao, Yonglin ;
Cao, Yuan ;
Dinh, Hai Q. ;
Fu, Fang-Wei ;
Gao, Jian ;
Sriboonchitta, Songsak .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2018, 12 (02) :231-262
[7]   A class of repeated-root constacyclic codes over Fpm[u]/⟨ue⟩ of Type 2 [J].
Cao, Yuan ;
Cao, Yonglin ;
Dinh, Hai Q. ;
Fu, Fang-Wei ;
Gao, Jian ;
Sriboonchitta, Songsak .
FINITE FIELDS AND THEIR APPLICATIONS, 2019, 55 :238-267
[8]   Codes for Symbol-Pair Read Channels [J].
Cassuto, Yuval ;
Blaum, Mario .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (12) :8011-8020
[9]   ON REPEATED-ROOT CYCLIC CODES [J].
CASTAGNOLI, G ;
MASSEY, JL ;
SCHOELLER, PA ;
VONSEEMANN, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :337-342
[10]   Constacyclic codes of length 2ps over Fpm + uFpm [J].
Chen, Bocong ;
Dinh, Hai Q. ;
Liu, Hongwei ;
Wang, Liqi .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 37 :108-130