THE DIRICHLET SPECTRAL RADIUS OF TREES

被引:0
作者
Zhang, Guang -Jun [1 ]
Li, Wei-Xia [2 ]
机构
[1] Qingdao Univ Sci & Technol, Sch Math & Phys, Qingdao 266061, Peoples R China
[2] Qingdao Univ, Sch Math Sci, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
Dirichlet spectral radius; Degree sequence; Tree; LAPLACIAN; GRAPHS; EIGENVALUES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the trees with the largest Dirichlet spectral radius among all trees with a given degree sequence are characterized. Moreover, the extrema' graphs having the largest Dirichlet spectral radius are obtained in the set of all trees of order n with a given number of pendant vertices.
引用
收藏
页码:152 / 159
页数:8
相关论文
共 12 条
[1]  
Biyikoglu T, 2008, ELECTRON J COMB, V15
[2]   Faber-Krahn type inequalities for trees [J].
Biyikoglu, Tuerker ;
Leydold, Josef .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (02) :159-174
[3]   A chip-firing game and Dirichlet eigenvalues [J].
Chung, F ;
Ellis, RB .
DISCRETE MATHEMATICS, 2002, 257 (2-3) :341-355
[4]  
Chung F., 1992, Spectral Graph Theory
[5]   The Signless Laplacian Spectral Radius of Graphs with Given Number of Pendant Vertices [J].
Fan, Yi-Zheng ;
Yang, Dan .
GRAPHS AND COMBINATORICS, 2009, 25 (03) :291-298
[6]   SOME GEOMETRIC ASPECTS OF GRAPHS AND THEIR EIGENFUNCTIONS [J].
FRIEDMAN, J .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (03) :487-525
[7]   Shape recognition using eigenvalues of the Dirichlet Laplacian [J].
Khabou, M. A. ;
Hermi, L. ;
Rhouma, M. B. H. .
PATTERN RECOGNITION, 2007, 40 (01) :141-153
[8]  
Merris R., 1994, LINEAR ALGEBRA APPL, V197-198, P143, DOI DOI 10.1016/0024-3795(94)90486-3
[9]   On the weighted trees with given degree sequence and positive weight set [J].
Tan, Shang-Wang .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (02) :380-389
[10]  
Tsiatas A, 2013, P 22 INT C WORLD WID, P1297