Variational and viscosity operators for the evolutionary Hamilton-Jacobi equation

被引:1
作者
Roos, Valentine [1 ,2 ]
机构
[1] PSL Res Univ, Ecole Normale Super, Dept Math & Applicat, UMR CNRS 855345, Rue Ulm, F-75230 Paris 05, France
[2] PSL Res Univ, Univ Paris Dauphine, Dept Math & Applicat, UMR CNRS 855345, Rue Ulm, F-75775 Paris 16, France
基金
欧洲研究理事会;
关键词
Hamilton-Jacobi equation; variational solution; viscosity solution; minmax selector; Lax-Oleinik semigroup; SYMPLECTIC TOPOLOGY; UNIQUENESS; GEOMETRY; THEOREM;
D O I
10.1142/S0219199718500189
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for the first-order evolutionary Hamilton-Jacobi equation with a Lipschitz initial condition. The Hamiltonian is not necessarily convex in the momentum variable and not a priori compactly supported. We build and study an operator giving a variational solution of this problem, and get local Lipschitz estimates on this operator. Iterating this variational operator we obtain the viscosity operator and extend the estimates to the viscosity framework. We also check that the construction of the variational operator gives the Lax-Oleinik semigroup if the Hamiltonian is convex or concave in the momentum variable.
引用
收藏
页数:76
相关论文
共 37 条
[1]   AXIOMS AND FUNDAMENTAL EQUATIONS OF IMAGE-PROCESSING [J].
ALVAREZ, L ;
GUICHARD, F ;
LIONS, PL ;
MOREL, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (03) :199-257
[2]   On a Theorem Due to Birkhoff [J].
Arnaud, Marie-Claude .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (06) :1307-1316
[3]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[4]  
Barles G., 1994, MATH APPL BERLIN, V17
[5]   The Lax-Oleinik semi-group: a Hamiltonian point of view [J].
Bernard, Patrick .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1131-1177
[6]   A geometric definition of the Mane-Mather set and a Theorem of Marie-Claude Arnaud [J].
Bernard, Patrick ;
dos Santos, Joana Oliveira .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 152 :167-178
[7]   ON C0-VARIATIONAL SOLUTIONS FOR HAMILTON-JACOBI EQUATIONS [J].
Bernardi, Olga ;
Cardin, Franco .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (02) :385-406
[8]   Commuting Hamiltonians and Hamilton-Jacobi multi-time equations [J].
Cardin, Franco ;
Viterbo, Claude .
DUKE MATHEMATICAL JOURNAL, 2008, 144 (02) :235-284
[9]  
CHAPERON M, 1991, CR ACAD SCI I-MATH, V312, P345
[10]  
CHAPERON M, 1984, CR ACAD SCI I-MATH, V298, P293