On the Blow-up of Solutions to Nonlinear Initial-Boundary Value Problems

被引:0
作者
Pohozaev, S. I. [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
STEKLOV Institute; Nonlinear Problem; Global Solution; Nontrivial Solution; Nonlinear Operator;
D O I
10.1134/S008154380801015X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of nonexistence (blow-up) of solutions of nonlinear evolution equations in the case of a bounded (with respect to the space variables) domain. Following the method of nonlinear capacity based on the application of test functions that are optimal ("characteristic") for the corresponding nonlinear operators, we obtain conditions for the blow-up of solutions to nonlinear initial-boundary value problems. We also show by examples that these conditions are sharp in the class of problems under consideration.
引用
收藏
页码:204 / 217
页数:14
相关论文
共 7 条
[1]   Finite-time singularity versus global regularity for hyper-viscous Hamilton-Jacobi-like equations [J].
Bellout, H ;
Benachour, S ;
Titi, ES .
NONLINEARITY, 2003, 16 (06) :1967-1989
[2]   Blowup for nonlinear initial-boundary value problems [J].
Galaktionov, V. A. ;
Pohozaev, S. I. .
DOKLADY MATHEMATICS, 2007, 75 (01) :76-79
[3]  
MlTIDIERI E., 2001, P STEKLOV I MATH, V234
[4]  
POHOZAEV S, 1997, DOKL MATH, V56, P924
[5]  
POHOZAEV SI, 1972, T MOSCOW MATH SOC, V23, P60
[6]  
POKHOZHAEV SI, 1969, FUNCT ANAL APPL, V3, P147
[7]  
Sveshnikov A. G., 2007, Linear and Nonlinear Equations of Sobolev Type