Application of Computer Algebra System to Geodesy

被引:0
作者
Zaletnyik, P. [1 ]
Palancz, B. [2 ]
Awange, J. L. [3 ]
Grafarend, E. W. [4 ]
机构
[1] Budapest Univ Technol & Econ, Dept Geodesy & Surveying, POB 91, H-1521 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Dept Photogrammetry & Geoinformat, POB 91, H-1521 Budapest, Hungary
[3] Curtin Univ Technol, Western Australian Ctr Geodesy, Inst Geosci Res, Perth, WA 6845, Australia
[4] Univ Stuttgart, Dept Geodesy & Geoinformat, D-70174 Stuttgart, Germany
来源
OBSERVING OUR CHANGING EARTH | 2009年 / 133卷
关键词
Computer Algebra; polynomial equations; Dixon resultant; Groebner basis;
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This contribution extends the previous work of Awange and Grafarend (2005). Using Groebner basis and Dixon resultant as the engine behind Computer Algebra Systems (CAS). The authors demonstrate how 3D GPS positioning, 3D intersection, as well as datum transformation problems are solved 'live' in Mathematica, thanks to modernization in CAS. Mathematica notebooks containing these 'live' computational models and examples are available at http://library.wolfram.com/infocenter/MathSource/6654.
引用
收藏
页码:803 / +
页数:2
相关论文
共 11 条
  • [1] Awange J. L., 2005, SOLVING ALGEBRAIC CO
  • [2] AWANGE JL, 2002, THESIS U STUTTGART
  • [3] AWANGE JL, 2003, GEOINFORMATION LANDM, V128, P395
  • [4] Bikker P, 1999, J SYMB COMPUT, V28, P45, DOI 10.1006/jsco.1998.0267
  • [5] CAYLEY A, 1865, CAMBRIDGE DUBLIN MAT, V3, P210
  • [6] Dixon AL, 1908, P LOND MATH SOC, V6, P468
  • [7] Haneberg W., 2004, Computational Geosciences with Mathematica, V2004 Editi
  • [8] Nakos G., 1997, MATHEDUCRES, V6, P11
  • [9] Nakos G, 2002, FAST ALGORITHM IMPLE
  • [10] Dixon resultant's solution of systems of geodetic polynomial equations
    Palancz, Bela
    Zaletnyik, Piroska
    Awange, Joseph L.
    Grafarend, Erik W.
    [J]. JOURNAL OF GEODESY, 2008, 82 (08) : 505 - 511