Injective coloring of planar graphs with girth 6

被引:30
作者
Dong, Wei [1 ,2 ]
Lin, Wensong [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 211189, Jiangsu, Peoples R China
[2] Nanjing Xiaozhuang Univ, Sch Math & Informat Technol, Nanjing 211171, Jiangsu, Peoples R China
关键词
Girth; Planar graph; Injective coloring; Cycle;
D O I
10.1016/j.disc.2013.02.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An injective coloring of a graph is a vertex coloring where two vertices have distinct colors if a path of length two exists between them. Let chi(i)(G) be the injective chromatic number of a graph G. In this paper, we investigate the injective coloring of planar graphs with girth 6. We improve some results of Borodin and Ivanova (2011) [1], Doyon et al. (2010) [4] and Li and Xu (2012) [6] by showing that if G is a planar graph with girth at least 6, then (1) chi(i)(G) <= Delta + 3; (2) chi(i)(G) <= Delta + 2 if Delta >= 9; (3) chi(i)(G) <= Delta + 1 if Delta >= 17. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1302 / 1311
页数:10
相关论文
共 7 条
[1]   Injective (Δ+1)-coloring of planar graphs with girth 6 [J].
Borodin, O. V. ;
Ivanova, A. O. .
SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (01) :23-29
[2]   Injective coloring of planar graphs [J].
Bu, Yuehua ;
Chen, Dong ;
Raspaud, Andre ;
Wang, Weifan .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) :663-672
[3]   Some results on the injective chromatic number of graphs [J].
Chen, Min ;
Hahn, Gena ;
Raspaud, Andre ;
Wang, Weifan .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (03) :299-318
[4]   Some bounds on the injective chromatic number of graphs [J].
Doyon, Alain ;
Hahn, Gena ;
Raspaud, Andre .
DISCRETE MATHEMATICS, 2010, 310 (03) :585-590
[5]   On the injective chromatic number of graphs [J].
Hahn, G ;
Kratochvíl, J ;
Sirán, J ;
Sotteau, D .
DISCRETE MATHEMATICS, 2002, 256 (1-2) :179-192
[6]   Injective choosability of planar graphs of girth five and six [J].
Li, Rui ;
Xu, Baogang .
DISCRETE MATHEMATICS, 2012, 312 (06) :1260-1265
[7]   Injective colorings of planar graphs with few colors [J].
Luzar, Borut ;
Skrekovski, Riste ;
Tancer, Martin .
DISCRETE MATHEMATICS, 2009, 309 (18) :5636-5649