Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization

被引:361
|
作者
Gelman, Andrew [1 ]
Lee, Daniel [2 ]
Guo, Jiqiang [2 ]
机构
[1] Columbia Univ, Stat & Polit Sci, New York, NY 10027 USA
[2] Columbia Univ, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Bayesian inference; hierarchical models; probabilistic programming; statistical computing;
D O I
10.3102/1076998615606113
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers' perspectives and illustrate with a simple but nontrivial nonlinear regression example.
引用
收藏
页码:530 / 543
页数:14
相关论文
共 50 条
  • [21] MAP Inference for Probabilistic Logic Programming
    Bellodi, Elena
    Alberti, Marco
    Riguzzi, Fabrizio
    Zese, Riccardo
    THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2020, 20 (05) : 641 - 655
  • [22] Fuzzy programming of multiperiod probabilistic inference
    Murgu, A
    KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 1468 - 1472
  • [23] The magic of logical inference in probabilistic programming
    Gutmann, Bernd
    Thon, Ingo
    Kimmig, Angelika
    Bruynooghe, Maurice
    De Raedt, Luc
    THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2011, 11 : 663 - 680
  • [24] Structured Factored Inference for Probabilistic Programming
    Pfeffer, Avi
    Ruttenberg, Brian
    Kretschmer, William
    O'Connor, Alison
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [25] Exact Bayesian Inference on Discrete Models via Probability Generating Functions: A Probabilistic Programming Approach
    Zaiser, Fabian
    Murawski, Andrzej S.
    Ong, C. -H. Luke
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [26] Functional Programming for Modular Bayesian Inference
    Scibior, Adam
    Kammar, Ohad
    Ghahramani, Zoubin
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2018, 2
  • [27] Functional Programming for Modular Bayesian Inference
    Scibior, Adam
    Kammar, Ohad
    Ghahramani, Zoubin
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES, 2018,
  • [28] SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization
    Ye, X. W.
    Yuan, L.
    Xi, P. S.
    Liu, H.
    SMART STRUCTURES AND SYSTEMS, 2018, 21 (05) : 601 - 609
  • [29] Bayesian Inference Under Ramp Stress Accelerated Life Testing Using Stan
    Abdalla Abdel-Ghaly
    Hanan Aly
    Elham Abdel-Rahman
    Sankhya B, 2023, 85 : 132 - 174
  • [30] Probabilistic Bayesian Neural Networks for Efficient Inference
    Ishak, Md
    Alawad, Mohammed
    PROCEEDING OF THE GREAT LAKES SYMPOSIUM ON VLSI 2024, GLSVLSI 2024, 2024, : 724 - 729