Comparative analysis of RNA sequencing methods for degraded or low-input samples

被引:323
作者
Adiconis, Xian [1 ]
Borges-Rivera, Diego [1 ]
Satija, Rahul [1 ]
DeLuca, David S. [1 ]
Busby, Michele A. [1 ]
Berlin, Aaron M. [1 ]
Sivachenko, Andrey [1 ]
Thompson, Dawn Anne [1 ]
Wysoker, Alec [1 ]
Fennell, Timothy [1 ]
Gnirke, Andreas [1 ]
Pochet, Nathalie [1 ]
Regev, Aviv [1 ,2 ,3 ]
Levin, Joshua Z. [1 ]
机构
[1] Broad Inst MIT & Harvard, Cambridge, MA USA
[2] MIT, Dept Biol, Cambridge, MA USA
[3] MIT, Howard Hughes Med Inst, Cambridge, MA USA
基金
美国国家卫生研究院;
关键词
MESSENGER-RNA; RIBOSOMAL-RNA; SEQ; SINGLE; TRANSCRIPTOME; EFFICIENT; ALIGNMENT; DNA;
D O I
10.1038/nmeth.2483
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
RNA-seq is an effective method for studying the transcriptome, but it can be difficult to apply to scarce or degraded RNA from fixed clinical samples, rare cell populations or cadavers. Recent studies have proposed several methods for RNA-seq of low-quality and/or low-quantity samples, but the relative merits of these methods have not been systematically analyzed. Here we compare five such methods using metrics relevant to transcriptome annotation, transcript discovery and gene expression. Using a single human RNA sample, we constructed and sequenced ten libraries with these methods and compared them against two control libraries. We found that the RNase H method performed best for chemically fragmented, low-quality RNA, and we confirmed this through analysis of actual degraded samples. RNase H can even effectively replace oligo(dT)-based methods for standard RNA-seq. SMART and NuGEN had distinct strengths for measuring low-quantity RNA. Our analysis allows biologists to select the most suitable methods and provides a benchmark for future method development.
引用
收藏
页码:623 / +
页数:10
相关论文
共 50 条
  • [11] Comparative Analysis of Single-Cell RNA Sequencing Methods
    Ziegenhain, Christoph
    Vieth, Beate
    Parekh, Swati
    Reinius, Bjorn
    Guillaumet-Adkins, Amy
    Smets, Martha
    Leonhardt, Heinrich
    Heyn, Holger
    Hellmann, Ines
    Enard, Wolfgang
    MOLECULAR CELL, 2017, 65 (04) : 631 - +
  • [12] Efficient and cost-effective bacterial mRNA sequencing from low input samples through ribosomal RNA depletion
    Wangsanuwat, Chatarin
    Heom, Kellie A.
    Liu, Estella
    O'Malley, Michelle A.
    Dey, Siddharth S.
    BMC GENOMICS, 2020, 21 (01)
  • [13] Comparative analysis of RNA enrichment methods for preparation of Cryptococcus neoformans RNA sequencing libraries
    Telzrow, Calla L.
    Zwack, Paul J.
    Righi, Shannon Esher
    Dietrich, Fred S.
    Chan, Cliburn
    Owzar, Kouros
    Alspaugh, J. Andrew
    Granek, Joshua A.
    G3-GENES GENOMES GENETICS, 2021, 11 (11):
  • [14] Low-cost, low-input RNA-seq protocols perform nearly as well as high-input protocols
    Combs, Peter A.
    Eisen, Michael B.
    PEERJ, 2015, 3
  • [15] Comparative analysis of PacBio and ONT RNA sequencing methods for Nemopilema Nomurai venom identification
    Ma, Yuzhen
    Li, Jie
    Yu, Huahua
    Teng, Lichao
    Geng, Hao
    Li, Rongfeng
    Xing, Ronge
    Liu, Song
    Li, Pengcheng
    GENOMICS, 2023, 115 (06)
  • [16] Enhanced transcriptome-wide RNA G-quadruplex sequencing for low RNA input samples with rG4-seq 2.0
    Jieyu Zhao
    Eugene Yui-Ching Chow
    Pui Yan Yeung
    Qiangfeng Cliff Zhang
    Ting-Fung Chan
    Chun Kit Kwok
    BMC Biology, 20
  • [17] Enhanced transcriptome-wide RNA G-quadruplex sequencing for low RNA input samples with rG4-seq 2.0
    Zhao, Jieyu
    Chow, Eugene Yui-Ching
    Yeung, Pui Yan
    Zhang, Qiangfeng Cliff
    Chan, Ting-Fung
    Kwok, Chun Kit
    BMC BIOLOGY, 2022, 20 (01)
  • [18] SEEMLIS: a flexible semi-automated method for enrichment of methylated DNA from low-input samples
    Rodems, Tamara S.
    Juang, Duane S.
    Stahlfeld, Charlotte N.
    Gilsdorf, Cole S.
    Krueger, Tim E. G.
    Heninger, Erika
    Zhao, Shuang G.
    Sperger, Jamie M.
    Beebe, David J.
    Haffner, Michael C.
    Lang, Joshua M.
    CLINICAL EPIGENETICS, 2022, 14 (01)
  • [19] Gel-seq: whole-genome and transcriptome sequencing by simultaneous low-input DNA and RNA library preparation using semi-permeable hydrogel barriers
    Hoople, Gordon D.
    Richards, Andrew
    Wu, Yan
    Kaneko, Kota
    Luo, Xiaolin
    Feng, Gen-Sheng
    Zhang, Kun
    Pisano, Albert P.
    LAB ON A CHIP, 2017, 17 (15) : 2619 - 2630
  • [20] Tissue dissociation for single-cell and single-nuclei RNA sequencing for low amounts of input material
    Wiegleb, Gordon
    Reinhardt, Susanne
    Dahl, Andreas
    Posnien, Nico
    FRONTIERS IN ZOOLOGY, 2022, 19 (01)