Manipulating Forces in Optical Vortex using Plasmonic Bumps

被引:0
作者
Khoo, E. H. [1 ]
Ahmed, I. [1 ]
Ang, M. T. W. [1 ]
Li, E. P. [1 ]
机构
[1] A STAR Inst High Performance Comp, Elect & Photon Dept, Connexis 138632, Singapore
来源
OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION IX | 2012年 / 8458卷
关键词
plasmonic; optical vortex; localized surface plasmon; polarization; FIELD;
D O I
10.1117/12.929330
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, small plasmonic nanobumps, which consist of metal/dielectric layers are placed on the ring of optical vortex to enhance electric field ampltiude. In this paper, a plasmonic nanobump is placed on the ring of smaller optical vortex. The smaller optical vortex form from the resultant topological phase between the handedness of the incident circular polarized light and the nanoslits spiral. Different designs of plasmonic nanobump are investigated, and tapered nanobump produced higher field enhancement due to higher surface charge density at the tapering end. Higher field intensity at the tip of the plasmonic nanobump produces lower potential, which attract nanoparticle to the region. The optical force increases by the square of the electric field amplitude. This high electric field intensity at the plasmonic nanobump functions as attractive node, which trap molecules inside the optical vortex. Additional plasmonic nanobumps are added onto the other locations of the optical vortex to manipulate the particle trapping positions. This allows the precise control of molecule's position and movement for imaging, characterization and analysis, which is useful for mobile lab-on-chip devices.
引用
收藏
页数:9
相关论文
共 18 条
  • [1] Electromagnetic Field Enhancement and Spectrum Shaping through Plasmonically Integrated Optical Vortices
    Ahn, Wonmi
    Boriskina, Svetlana V.
    Hong, Yan
    Reinhard, Bjoern M.
    [J]. NANO LETTERS, 2012, 12 (01) : 219 - 227
  • [2] Biosensing with plasmonic nanosensors
    Anker, Jeffrey N.
    Hall, W. Paige
    Lyandres, Olga
    Shah, Nilam C.
    Zhao, Jing
    Van Duyne, Richard P.
    [J]. NATURE MATERIALS, 2008, 7 (06) : 442 - 453
  • [3] Berry M. V., 1605, P ROYAL SOC LONDON A, V336
  • [4] Edwards D.F., 1985, Handbook of optical constants of solids
  • [5] Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas
    Kang, Ju-Hyung
    Kim, Kipom
    Ee, Ho-Seok
    Lee, Yong-Hee
    Yoon, Tae-Young
    Seo, Min-Kyo
    Park, Hong-Gyu
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [6] Synthesis and Dynamic Switching of Surface Plasmon Vortices with Plasmonic Vortex Lens
    Kim, Hwi
    Park, Junghyun
    Cho, Seong-Woo
    Lee, Seung-Yeol
    Kang, Minsu
    Lee, Byoungho
    [J]. NANO LETTERS, 2010, 10 (02) : 529 - 536
  • [7] Kirk P. G., 2008, SURFACE PLASMONS NAN
  • [8] Optical forces in coupled plasmonic nanosystems:: Near field and far field interaction regimes
    Lamothe, Elodie
    Leveque, Gaeetan
    Martin, Olivie J. F.
    [J]. OPTICS EXPRESS, 2007, 15 (15): : 9631 - 9644
  • [9] Maier S. A., 2007, PLASMONICS FUNDAMENT, DOI DOI 10.1007/0-387-37825-1
  • [10] Novotny L., 2012, PRINCIPLES NANOOPTIC