On the spectral radius of bipartite graphs which are nearly complete

被引:4
|
作者
Das, Kinkar Chandra [1 ]
Cangul, Ismail Naci [2 ]
Maden, Ayse Dilek [3 ]
Cevik, Ahmet Sinan [3 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Uludag Univ, Fac Arts & Sci, Dept Math, TR-16059 Bursa, Turkey
[3] Selcuk Univ, Fac Sci, Dept Math, TR-42075 Konya, Turkey
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2013年
关键词
bipartite graph; adjacency matrix; spectral radius; EIGENVALUES; CONJECTURES; BOUNDS; PROOF;
D O I
10.1186/1029-242X-2013-121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For p, q, r, s, t is an element of Z(+) with rt <= p and st <= q, let G = G(p, q; r, s; t) be the bipartite graph with partite sets U = {u(1), ..., u(p)} and V = {v(1),..., v(q)} such that any two edges u(i) and v(j) are not adjacent if and only if there exists a positive integer k with 1 <= k <= t such that (k - 1) r + 1 <= i <= kr and (k - 1) s + 1 <= j <= ks. Under these circumstances, Chen et al. (Linear Algebra Appl. 432: 606-614, 2010) presented the following conjecture: Assume that p <= q, k < p, vertical bar U vertical bar = p, vertical bar V vertical bar = q and vertical bar E(G)vertical bar = pq - k. Then whether it is true that lambda(1)(G) <= lambda(1)(G(p, q; k, 1; 1)) = root pq - k + root p(2)q(2) - 6pqk + 4pk + 4qk(2) - 3k(2)/2. In this paper, we prove this conjecture for the range min(vh is an element of V){deg v(h)} <= left perpendicular p-1/2right perpendicular.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] A note on the bounds for the spectral radius of graphs
    Filipovski, Slobodan
    Stevanovic, Dragan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 667 : 1 - 9
  • [42] The spectral radius of graphs with no odd wheels
    Cioaba, Sebastian
    Desai, Dheer Noal
    Tait, Michael
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 99
  • [43] ON THE α-SPECTRAL RADIUS OF GRAPHS
    Guo, Haiyan
    Zhou, Bo
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2020, 14 (02) : 431 - 458
  • [44] Spectral radius and Hamiltonian properties of graphs
    Ning, Bo
    Ge, Jun
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (08) : 1520 - 1530
  • [45] On spectral radius of graphs with pendant paths
    Passbani, Hossein
    Salemi, Abbas
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 571 : 26 - 40
  • [46] Matchings in graphs from the spectral radius
    Kim, Minjae
    Suil, O.
    Sim, Wooyong
    Shin, Dongwoo
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (11) : 1794 - 1803
  • [47] Spectral radius and [a, b]-factors in graphs
    Fan, Dandan
    Lin, Huiqiu
    Lu, Hongliang
    DISCRETE MATHEMATICS, 2022, 345 (07)
  • [48] DECOMPOSITION OF RANDOM GRAPHS INTO COMPLETE BIPARTITE GRAPHS
    Chung, Fan
    Peng, Xing
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (01) : 296 - 310
  • [49] On the spectral radius of graphs without a gem
    Zhang, Yanting
    Wang, Ligong
    DISCRETE MATHEMATICS, 2024, 347 (11)
  • [50] The Laplacian spectral radius of graphs on surfaces
    Lin, Liang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) : 973 - 977