On the spectral radius of bipartite graphs which are nearly complete

被引:4
|
作者
Das, Kinkar Chandra [1 ]
Cangul, Ismail Naci [2 ]
Maden, Ayse Dilek [3 ]
Cevik, Ahmet Sinan [3 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Uludag Univ, Fac Arts & Sci, Dept Math, TR-16059 Bursa, Turkey
[3] Selcuk Univ, Fac Sci, Dept Math, TR-42075 Konya, Turkey
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2013年
关键词
bipartite graph; adjacency matrix; spectral radius; EIGENVALUES; CONJECTURES; BOUNDS; PROOF;
D O I
10.1186/1029-242X-2013-121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For p, q, r, s, t is an element of Z(+) with rt <= p and st <= q, let G = G(p, q; r, s; t) be the bipartite graph with partite sets U = {u(1), ..., u(p)} and V = {v(1),..., v(q)} such that any two edges u(i) and v(j) are not adjacent if and only if there exists a positive integer k with 1 <= k <= t such that (k - 1) r + 1 <= i <= kr and (k - 1) s + 1 <= j <= ks. Under these circumstances, Chen et al. (Linear Algebra Appl. 432: 606-614, 2010) presented the following conjecture: Assume that p <= q, k < p, vertical bar U vertical bar = p, vertical bar V vertical bar = q and vertical bar E(G)vertical bar = pq - k. Then whether it is true that lambda(1)(G) <= lambda(1)(G(p, q; k, 1; 1)) = root pq - k + root p(2)q(2) - 6pqk + 4pk + 4qk(2) - 3k(2)/2. In this paper, we prove this conjecture for the range min(vh is an element of V){deg v(h)} <= left perpendicular p-1/2right perpendicular.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] On the spectral radius of bipartite graphs which are nearly complete
    Kinkar Chandra Das
    Ismail Naci Cangul
    Ayse Dilek Maden
    Ahmet Sinan Cevik
    Journal of Inequalities and Applications, 2013
  • [2] Spectral radius of bipartite graphs
    Liu, Chia-an
    Weng, Chih-wen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 474 : 30 - 43
  • [3] On the largest eigenvalues of bipartite graphs which are nearly complete
    Chen, Yi-Fan
    Fu, Hung-Lin
    Kim, In-Jae
    Stehr, Eryn
    Watts, Brendon
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (2-3) : 606 - 614
  • [4] On the spectral radius of bipartite graphs
    Fan, Dandan
    Wang, Guoping
    Zao, Yuying
    UTILITAS MATHEMATICA, 2019, 113 : 149 - 158
  • [5] On the spectral radius of bipartite graphs
    Fan, Dandan
    Wang, Guoping
    Zao, Yuying
    UTILITAS MATHEMATICA, 2020, 114 : 3 - 12
  • [6] The maximum spectral radius of irregular bipartite graphs
    Xue, Jie
    Liu, Ruifang
    Guo, Jiaxin
    Shu, Jinlong
    ADVANCES IN APPLIED MATHEMATICS, 2023, 142
  • [7] On the spectral radius of bipartite graphs with given diameter
    Zhai, Mingqing
    Liu, Ruifang
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 1165 - 1170
  • [8] A Lower Bound for the Distance Laplacian Spectral Radius of Bipartite Graphs with Given Diameter
    Qi, Linming
    Miao, Lianying
    Zhao, Weiliang
    Liu, Lu
    MATHEMATICS, 2022, 10 (08)
  • [9] ON THE SECOND LARGEST SPECTRAL RADIUS OF UNICYCLIC BIPARTITE GRAPHS
    Nath, Milan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2011, 3 (02) : 253 - 258
  • [10] The Laplacian spectral radius of some bipartite graphs
    Zhang, Xiaoling
    Zhang, Heping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1610 - 1619