On Asymptotic Behavior of Multilinear Eigenvalue Statistics of Random Matrices

被引:6
|
作者
Lytova, A. [1 ]
Pastur, L. [1 ]
机构
[1] B Verkin Inst Low Temp Phys, Div Math, UA-61103 Kharkov, Ukraine
关键词
Random matrices; Multilinear eigenvalue statistics; Central limit theorem;
D O I
10.1007/s10955-008-9644-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the Law of Large Numbers and the Central Limit Theorem for analogs of U- and V- (von Mises) statistics of eigenvalues of random matrices as their size tends to infinity. We show first that for a certain class of test functions (kernels), determining the statistics, the validity of these limiting laws reduces to the validity of analogous facts for certain linear eigenvalue statistics. We then check the conditions of the reduction statements for several most known ensembles of random matrices. The reduction phenomenon is well known in statistics, dealing with i.i.d. random variables. It is of interest that an analogous phenomenon is also the case for random matrices, whose eigenvalues are strongly dependent even if the entries of matrices are independent.
引用
收藏
页码:871 / 882
页数:12
相关论文
共 50 条
  • [1] On Asymptotic Behavior of Multilinear Eigenvalue Statistics of Random Matrices
    A. Lytova
    L. Pastur
    Journal of Statistical Physics, 2008, 133 : 871 - 882
  • [2] EIGENVALUE STATISTICS OF RANDOM REAL MATRICES
    LEHMANN, N
    SOMMERS, HJ
    PHYSICAL REVIEW LETTERS, 1991, 67 (08) : 941 - 944
  • [3] EIGENVALUE STATISTICS OF DISTORTED RANDOM MATRICES
    CHEON, T
    PHYSICAL REVIEW LETTERS, 1990, 65 (05) : 529 - 532
  • [4] Random matrices - Asymptotic statistics of eigenvalues
    Pasturi, L
    Lejay, A
    SEMINAIRE DE PROBABILITIES XXXVI, 2003, 1801 : 135 - 164
  • [5] Random matrices: Universality of local eigenvalue statistics
    Tao, Terence
    Vu, Van
    ACTA MATHEMATICA, 2011, 206 (01) : 127 - 204
  • [6] Asymptotic behaviour of linear eigenvalue statistics of Hankel matrices
    Kumar, A. S. Kiran
    Maurya, Shambhu Nath
    STATISTICS & PROBABILITY LETTERS, 2022, 181
  • [7] Largest eigenvalue statistics of sparse random adjacency matrices
    Slavov, Bogdan
    Polovnikov, Kirill
    Nechaev, Sergei
    Pospelov, Nikita
    arXiv, 2023,
  • [8] FLUCTUATIONS OF LINEAR EIGENVALUE STATISTICS OF RANDOM BAND MATRICES
    Jana, I.
    Saha, K.
    Soshnikov, A.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2016, 60 (03) : 407 - 443
  • [9] Linear eigenvalue statistics of random matrices with a variance profile
    Adhikari, Kartick
    Jana, Indrajit
    Saha, Koushik
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (03)
  • [10] Functional asymptotic behavior of some random multilinear forms
    Cadre, B
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 68 (01) : 49 - 64