Variational integrator for the rotating shallow-water equations on the sphere

被引:16
作者
Brecht, Rudiger [1 ]
Bauer, Werner [2 ]
Bihlo, Alexander [1 ]
Gay-Balmaz, Francois [3 ]
MacLachlan, Scott [1 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[2] Imperial Coll London, Dept Math, London, England
[3] Ecole Normale Super, CNRS, Lab Meteorol Dynam, Paris, France
基金
加拿大自然科学与工程研究理事会; 欧盟地平线“2020”;
关键词
rotating shallow-water equations; structure-preserving discretization; variational integrator on sphere; POTENTIAL ENSTROPHY; NUMERICAL-INTEGRATION; DISCRETIZATION; SCHEMES; ENERGY;
D O I
10.1002/qj.3477
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We develop a variational integrator for the shallow-water equations on a rotating sphere. The variational integrator is built around a discretization of the continuous Euler-Poincare reduction framework for Eulerian hydrodynamics. We describe the discretization of the continuous Euler-Poincare equations on arbitrary simplicial meshes. Standard numerical tests are carried out to verify the accuracy and excellent conservational properties of the discrete variational integrator.
引用
收藏
页码:1070 / 1088
页数:19
相关论文
共 38 条
[11]  
Blanes S., 2016, CONCISE INTRO GEOMET, V23
[12]   Hamilton-Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties [J].
Bou-Rabee, Nawaf ;
Marsden, Jerrold E. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (02) :197-219
[13]   Symmetry-adapted moving mesh schemes for the nonlinear Schrodinger equation [J].
Budd, C ;
Dorodnitsyn, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48) :10387-10400
[14]   VARIATIONAL DISCRETIZATION FOR ROTATING STRATIFIED FLUIDS [J].
Desbrun, Mathieu ;
Gawlik, Evan S. ;
Gay-Balmaz, Francois ;
Zeitlin, Vladimir .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (02) :477-509
[15]   Total energy and potential enstrophy conserving schemes for the shallow water equations using Hamiltonian methods - Part 1: Derivation and properties [J].
Eldred, Christopher ;
Randall, David .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (02) :791-810
[16]   A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere [J].
Flyer, Natasha ;
Lehto, Erik ;
Blaise, Sebastien ;
Wright, Grady B. ;
St-Cyr, Amik .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (11) :4078-4095
[17]   A radial basis function method for the shallow water equations on a sphere [J].
Flyer, Natasha ;
Wright, Grady B. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106) :1949-1976
[18]  
Frank J, 2003, LECT NOTES COMP SCI, V26, P131
[19]   Geometric, variational discretization of continuum theories [J].
Gawlik, E. S. ;
Mullen, P. ;
Pavlov, D. ;
Marsden, J. E. ;
Desbrun, M. .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (21) :1724-1760
[20]  
Hairer E., 2006, Structure-Preserving Algorithms for Ordinary Differential Equations, V2nd