Variational integrator for the rotating shallow-water equations on the sphere

被引:16
作者
Brecht, Rudiger [1 ]
Bauer, Werner [2 ]
Bihlo, Alexander [1 ]
Gay-Balmaz, Francois [3 ]
MacLachlan, Scott [1 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[2] Imperial Coll London, Dept Math, London, England
[3] Ecole Normale Super, CNRS, Lab Meteorol Dynam, Paris, France
基金
加拿大自然科学与工程研究理事会; 欧盟地平线“2020”;
关键词
rotating shallow-water equations; structure-preserving discretization; variational integrator on sphere; POTENTIAL ENSTROPHY; NUMERICAL-INTEGRATION; DISCRETIZATION; SCHEMES; ENERGY;
D O I
10.1002/qj.3477
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We develop a variational integrator for the shallow-water equations on a rotating sphere. The variational integrator is built around a discretization of the continuous Euler-Poincare reduction framework for Eulerian hydrodynamics. We describe the discretization of the continuous Euler-Poincare equations on arbitrary simplicial meshes. Standard numerical tests are carried out to verify the accuracy and excellent conservational properties of the discrete variational integrator.
引用
收藏
页码:1070 / 1088
页数:19
相关论文
共 38 条
[1]  
[Anonymous], 1994, APPL MATH MATH COMPU
[2]  
[Anonymous], 1997, GRADUATE TEXTS MATH
[3]  
ARAKAWA A, 1981, MON WEATHER REV, V109, P18, DOI 10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO
[4]  
2
[5]  
Bauer W., 2018, J COMPUTATIONAL DYNA
[6]  
Bauer W., 2017, ARXIV170106448
[7]  
Bauer W., 2013, THESIS
[8]   B-METHODS FOR THE NUMERICAL SOLUTION OF EVOLUTION PROBLEMS WITH BLOW-UP SOLUTIONS PART I: VARIATION OF THE CONSTANT [J].
Beck, Melanie ;
Gander, Martin J. ;
Kwok, Felix .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06) :A2998-A3029
[9]   Symmetry-Preserving Numerical Schemes [J].
Bihlo, Alexander ;
Valiquette, Francis .
SYMMETRIES AND INTEGRABILITY OF DIFFERENCE EQUATIONS, 2017, :261-324
[10]   INVARIANT DISCRETIZATION SCHEMES FOR THE SHALLOW-WATER EQUATIONS [J].
Bihlo, Alexander ;
Popovych, Roman O. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (06) :B810-B839