An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage

被引:76
作者
Chu, Xiang [1 ]
Zhao, Xun [2 ]
Zhou, Yihao [2 ]
Wang, Yihan [1 ]
Han, Xueling [1 ]
Zhou, Yilin [1 ]
Ma, Jingxin [1 ]
Wang, Zixing [1 ]
Huang, Haichao [1 ]
Xu, Zhong [1 ]
Yan, Cheng [1 ]
Zhang, Haitao [1 ]
Yang, Weiqing [1 ]
Chen, Jun [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
基金
中国国家自然科学基金;
关键词
Wearable bioelectronics; Solid-state; Electrochemical energy storage; Pervasive energy solution; Personalized healthcare; FREESTANDING ELECTRODES; COMPOSITE PAPER; POLYANILINE; SUPERCAPACITORS; HYDROGEL; FILMS; POWER; FABRICATION; INTERNET;
D O I
10.1016/j.nanoen.2020.105179
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing lightweight, flexible, and foldable electrodes with decent mechanical durability and electrochemical activity is a highly desirable goal for solid-state electrochemical energy storage devices yet remains a formidable challenge to overcome. Herein, we invent a freestanding robust PANI membrane via introducing the dynamic boronate bond to bridge rigid PANI chains with complaint polyvinyl alcohol (PVA) chains. The resultant PANI/ PVA membrane (PPM) exhibits remarkable elasticity (17.8% strain) along with excellent tensile strength (33.7 MPa), outperforming the majority of existing state-of-the-art flexible electrochemical PANI membranes. Additionally, the PPM can be further assembled into a wearable solid-state supercapacitor with high electrochemical performance as well as decent mechanical durability. The lightweight, flexible, and foldable PANI membrane represents a great advancement in electrode materials for next-generation wearable solid-state electrochemical energy storage devices.
引用
收藏
页数:8
相关论文
共 51 条
[1]   The Internet of Things: A survey [J].
Atzori, Luigi ;
Iera, Antonio ;
Morabito, Giacomo .
COMPUTER NETWORKS, 2010, 54 (15) :2787-2805
[2]   POLYMER-FILMS ON ELECTRODES .16. INSITU ELLIPSOMETRIC MEASUREMENTS OF POLYBIPYRAZINE, POLYANILINE, AND POLYVINYLFERROCENE FILMS [J].
CARLIN, CM ;
KEPLEY, LJ ;
BARD, AJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (02) :353-359
[3]   High-strength carbon nanotube buckypaper composites as applied to free-standing electrodes for supercapacitors [J].
Che, Jianfei ;
Chen, Peng ;
Chan-Park, Mary B. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (12) :4057-4066
[4]   Smart Textiles for Electricity Generation [J].
Chen, Guorui ;
Li, Yongzhong ;
Bick, Michael ;
Chen, Jun .
CHEMICAL REVIEWS, 2020, 120 (08) :3668-3720
[5]   Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator [J].
Chen, Jun ;
Wang, Zhong Lin .
JOULE, 2017, 1 (03) :480-521
[6]  
Chen J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.138, 10.1038/NENERGY.2016.138]
[7]   STRUCTURE AND PROPERTIES OF POLY(ACRYLIC ACID)-DOPED POLYANILINE [J].
CHEN, SA ;
LEE, HT .
MACROMOLECULES, 1995, 28 (08) :2858-2866
[8]   Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors [J].
Chu, Xiang ;
Huang, Haichao ;
Zhang, Haitao ;
Zhang, Hepeng ;
Gu, Bingni ;
Su, Hai ;
Liu, Fangyan ;
Han, Yu ;
Wang, Zixing ;
Chen, Ningjun ;
Yan, Cheng ;
Deng, Wen ;
Deng, Weili ;
Yang, Weiqing .
ELECTROCHIMICA ACTA, 2019, 301 :136-144
[9]   Flexible graphene-polyaniline composite paper for high-performance supercapacitor [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1185-1191
[10]   Towards flexible solid-state supercapacitors for smart and wearable electronics [J].
Dubal, Deepak P. ;
Chodankar, Nilesh R. ;
Kim, Do-Heyoung ;
Gomez-Romero, Pedro .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (06) :2065-2129