Identification of Hammerstein Model using Bacteria Foraging Optimization Algorithm

被引:0
作者
Pal, P. S. [1 ]
Ghosh, A. [1 ]
Choudhury, S. [1 ]
Debapriya, D.
Kar, R. [1 ]
Mandal, D. [1 ]
Ghoshal, S. P. [2 ]
机构
[1] NIT Durgapur, Dept ECE, Durgapur, India
[2] Natl Inst Technol, Dept Elect Engn, Durgapur, India
来源
2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1 | 2016年
关键词
BFO; Convergence; MSE; NARMAX Hammerstein model; Parametric identification; SYSTEMS; NONLINEARITIES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an efficient approach for identification of a nonlinear Hammerstein model using Bacteria Foraging Optimization (BFO) Algorithm. The accuracy and the efficiency of the proposed BFO based identification scheme have been justified with the optimal value of MSE and the corresponding comparative statistical information. The statistical information of the MSE has also been provided to justify consistency of the BFO algorithm for identification of the Hammerstein model. The estimated parameters along with their corresponding deviations and convergences are shown to justify efficiency of the proposed identification strategy. The deviations of the estimated parameters from their actual values are also reported to justify precision and effectiveness of the BFO based identification approach.
引用
收藏
页码:1609 / 1613
页数:5
相关论文
共 50 条
[31]   MILM hybrid identification method of fractional order neural-fuzzy Hammerstein model [J].
Zhang, Qian ;
Wang, Hongwei ;
Liu, Chunlei .
NONLINEAR DYNAMICS, 2022, 108 (03) :2337-2351
[32]   Parametric Identification with Performance Assessment of Wiener Systems Using Brain Storm Optimization Algorithm [J].
Pal, Partha Sarathi ;
Kar, Rajib ;
Mandal, Durbadal ;
Ghoshal, Sakti Prasad .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (08) :3143-3181
[33]   Parametric Identification with Performance Assessment of Wiener Systems Using Brain Storm Optimization Algorithm [J].
Partha Sarathi Pal ;
Rajib Kar ;
Durbadal Mandal ;
Sakti Prasad Ghoshal .
Circuits, Systems, and Signal Processing, 2017, 36 :3143-3181
[34]   Identification of Hammerstein-Wiener model with discontinuous input nonlinearity [J].
Brouri, A. ;
El Mansouri, F. Z. ;
Chaoui, F. Z. ;
Abdelaali, C. ;
Giri, F. .
SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (12)
[35]   Predictive Gradient Based Control Using Hammerstein Model for MEMS Micromirrors [J].
Chai, Guo ;
Tan, Yonghong ;
Tan, Qingyuan ;
Dong, Ruili ;
Long, Xichi .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024, 29 (03) :2125-2137
[36]   Identification of the Continuous-Time Hammerstein Models with Sparse Measurement Data Using Improved Marine Predators Algorithm [J].
Tumari, Mohd Zaidi Mohd ;
Ahmad, Mohd Ashraf ;
Mohamed, Zaharuddin .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025, 50 (14) :10567-10592
[37]   Adaptive Artifact Cancelation Based on Bacteria Foraging Optimization for ECG Signal [J].
Agya Ram Verma ;
Yashvir Singh .
Augmented Human Research, 2019, 4 (1)
[38]   Optimal selection of cloud manufacturing resources based on bacteria foraging optimization [J].
Hu, Yanjuan ;
Pan, Leiting ;
Lv, Wenjun ;
Wang, Zhanli .
INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2024, 37 (1-2) :165-182
[39]   On Stability of the Chemotactic Dynamics in Bacterial-Foraging Optimization Algorithm [J].
Das, Swagatam ;
Dasgupta, Sambarta ;
Biswas, Arijit ;
Abraham, Ajith ;
Konar, Amit .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2009, 39 (03) :670-679
[40]   Parameter Estimation of Hammerstein Model Based on a Gradient Algorithm in Wavelet Domain [J].
Li Zhen-Qiang ;
Zou Li-Rong ;
Huang Jie .
PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, :2081-2086