Measuring three-dimensional interaction potentials using optical interference

被引:20
作者
Mojarad, Nassir [1 ]
Sandoghdar, Vahid [2 ]
Krishnan, Madhavi [3 ,4 ]
机构
[1] Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland
[2] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
[3] Univ Zurich, Inst Phys Chem, CH-8057 Zurich, Switzerland
[4] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland
来源
OPTICS EXPRESS | 2013年 / 21卷 / 08期
基金
瑞士国家科学基金会;
关键词
PARTICLE TRACKING; MICROSCOPY; NANOPARTICLES; FORCES; SPECTROSCOPY; DIFFRACTION; SURFACES; POSITION; OBJECTS; RANGE;
D O I
10.1364/OE.21.009377
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe the application of three-dimensional (3D) scattering interferometric (iSCAT) imaging to the measurement of spatial interaction potentials for nano-objects in solution. We study electrostatically trapped gold particles in a nanofluidic device and present details on axial particle localization in the presence of a strongly reflecting interface. Our results demonstrate high-speed (similar to kHz) particle tracking with subnanometer localization precision in the axial and average 2.5 nm in the lateral dimension. A comparison of the measured levitation heights of trapped particles with the calculated values for traps of various geometries reveals good agreement. Our work demonstrates that iSCAT imaging delivers label-free, high-speed and accurate 3D tracking of nano-objects conducive to probing weak and long-range interaction potentials in solution. (C) 2013 Optical Society of America
引用
收藏
页码:9377 / 9389
页数:13
相关论文
共 40 条
  • [1] Imaging energy landscapes with concentrated diffusing colloidal probes
    Bahukudumbi, Pradipkumar
    Bevan, Michael A.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (24)
  • [2] Direct measurement of retarded van der Waals attraction
    Bevan, MA
    Prieve, DC
    [J]. LANGMUIR, 1999, 15 (23) : 7925 - 7936
  • [3] Optical microscopy measurements of kT-scale colloidal interactions
    Bevan, Michael A.
    Eichmann, Shannon L.
    [J]. CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2011, 16 (02) : 149 - 157
  • [4] High-Throughput Detection and Sizing of Individual Low-Index Nanoparticles and Viruses for Pathogen Identification
    Daaboul, G. G.
    Yurt, A.
    Zhang, X.
    Hwang, G. M.
    Goldberg, B. B.
    Uenlue, M. S.
    [J]. NANO LETTERS, 2010, 10 (11) : 4727 - 4731
  • [5] Hard spheres in vesicles: Curvature-induced forces and particle-induced curvature
    Dinsmore, AD
    Wong, DT
    Nelson, P
    Yodh, AG
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (02) : 409 - 412
  • [6] DIRECT MEASUREMENT OF COLLOIDAL FORCES USING AN ATOMIC FORCE MICROSCOPE
    DUCKER, WA
    SENDEN, TJ
    PASHLEY, RM
    [J]. NATURE, 1991, 353 (6341) : 239 - 241
  • [7] Electrostatically confined nanoparticle interactions and dynamics
    Eichmann, Shannon L.
    Anekal, Samartha G.
    Bevan, Michael A.
    [J]. LANGMUIR, 2008, 24 (03) : 714 - 721
  • [8] Expanding the optical trapping range of gold nanoparticles
    Hansen, PM
    Bhatia, VK
    Harrit, N
    Oddershede, L
    [J]. NANO LETTERS, 2005, 5 (10) : 1937 - 1942
  • [9] Imaging biomolecular interactions by fast three-dimensional tracking of laser-confined carrier particles
    Heinrich, Volkmar
    Wong, Wesley P.
    Halvorsen, Ken
    Evans, Evan
    [J]. LANGMUIR, 2008, 24 (04) : 1194 - 1203
  • [10] Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy
    Hess, ST
    Webb, WW
    [J]. BIOPHYSICAL JOURNAL, 2002, 83 (04) : 2300 - 2317