Measuring three-dimensional interaction potentials using optical interference

被引:20
作者
Mojarad, Nassir [1 ]
Sandoghdar, Vahid [2 ]
Krishnan, Madhavi [3 ,4 ]
机构
[1] Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland
[2] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
[3] Univ Zurich, Inst Phys Chem, CH-8057 Zurich, Switzerland
[4] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
PARTICLE TRACKING; MICROSCOPY; NANOPARTICLES; FORCES; SPECTROSCOPY; DIFFRACTION; SURFACES; POSITION; OBJECTS; RANGE;
D O I
10.1364/OE.21.009377
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe the application of three-dimensional (3D) scattering interferometric (iSCAT) imaging to the measurement of spatial interaction potentials for nano-objects in solution. We study electrostatically trapped gold particles in a nanofluidic device and present details on axial particle localization in the presence of a strongly reflecting interface. Our results demonstrate high-speed (similar to kHz) particle tracking with subnanometer localization precision in the axial and average 2.5 nm in the lateral dimension. A comparison of the measured levitation heights of trapped particles with the calculated values for traps of various geometries reveals good agreement. Our work demonstrates that iSCAT imaging delivers label-free, high-speed and accurate 3D tracking of nano-objects conducive to probing weak and long-range interaction potentials in solution. (C) 2013 Optical Society of America
引用
收藏
页码:9377 / 9389
页数:13
相关论文
共 40 条
[1]   Imaging energy landscapes with concentrated diffusing colloidal probes [J].
Bahukudumbi, Pradipkumar ;
Bevan, Michael A. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (24)
[2]   Direct measurement of retarded van der Waals attraction [J].
Bevan, MA ;
Prieve, DC .
LANGMUIR, 1999, 15 (23) :7925-7936
[3]   Optical microscopy measurements of kT-scale colloidal interactions [J].
Bevan, Michael A. ;
Eichmann, Shannon L. .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2011, 16 (02) :149-157
[4]   High-Throughput Detection and Sizing of Individual Low-Index Nanoparticles and Viruses for Pathogen Identification [J].
Daaboul, G. G. ;
Yurt, A. ;
Zhang, X. ;
Hwang, G. M. ;
Goldberg, B. B. ;
Uenlue, M. S. .
NANO LETTERS, 2010, 10 (11) :4727-4731
[5]   Hard spheres in vesicles: Curvature-induced forces and particle-induced curvature [J].
Dinsmore, AD ;
Wong, DT ;
Nelson, P ;
Yodh, AG .
PHYSICAL REVIEW LETTERS, 1998, 80 (02) :409-412
[6]   DIRECT MEASUREMENT OF COLLOIDAL FORCES USING AN ATOMIC FORCE MICROSCOPE [J].
DUCKER, WA ;
SENDEN, TJ ;
PASHLEY, RM .
NATURE, 1991, 353 (6341) :239-241
[7]   Electrostatically confined nanoparticle interactions and dynamics [J].
Eichmann, Shannon L. ;
Anekal, Samartha G. ;
Bevan, Michael A. .
LANGMUIR, 2008, 24 (03) :714-721
[8]   Expanding the optical trapping range of gold nanoparticles [J].
Hansen, PM ;
Bhatia, VK ;
Harrit, N ;
Oddershede, L .
NANO LETTERS, 2005, 5 (10) :1937-1942
[9]   Imaging biomolecular interactions by fast three-dimensional tracking of laser-confined carrier particles [J].
Heinrich, Volkmar ;
Wong, Wesley P. ;
Halvorsen, Ken ;
Evans, Evan .
LANGMUIR, 2008, 24 (04) :1194-1203
[10]   Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy [J].
Hess, ST ;
Webb, WW .
BIOPHYSICAL JOURNAL, 2002, 83 (04) :2300-2317