A Wind Speed Neural Model with Particle Swarm Optimization Kalman Learning

被引:0
作者
Alanis, Alma Y. [1 ]
Simetti, Chiara [2 ]
Ricalde, Luis J. [3 ]
Odone, Francesca [2 ]
机构
[1] Univ Guadalajara, CUCEI, Apartado Postal 51-71, Zapopan 45080, Jalisco, Mexico
[2] Univ Degli Studi Genova, DISI, D-16146 Genoa, Italy
[3] UADY, Fac Engn, Av Ind no Contaminantes Perferico Norte, Merida, Yucatan, Venezuela
来源
2012 WORLD AUTOMATION CONGRESS (WAC) | 2012年
关键词
Wind forecast; particle swarm optimization; neural networks; Kalman filtering learning; neural identifier; NETWORK;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with a novel training algorithm for a neural network architecture for wind speed time series prediction. The proposed training algorithm is based in an extended Kalman filter (EKF) improved using particle swarm optimization (PSO) to compute the design parameters The EKF-PSO based algorithm is employed to update the synaptic weights of the neural network. The size of the regression vector is determined by means of the Cao methodology. The proposed structure captures more efficiently the complex nature of the wind speed time series. The proposed model is trained and tested using real wind speed data values. In order to show the applicability of the proposed scheme Simulation results are included.
引用
收藏
页数:5
相关论文
共 23 条
[1]  
Al-kazemi B, 2002, IEEE C EVOL COMPUTAT, P489, DOI 10.1109/CEC.2002.1006283
[2]  
Alanis A. Y., 2009, P INT JOINT C NEUR N
[3]   Discrete-time adaptive backstepping nonlinear control via high-order neural networks [J].
Alanis, Alma Y. ;
Sanchez, Edgar N. ;
Loukianov, Alexander G. .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (04) :1185-1195
[4]  
[Anonymous], IMMREP198815 TU DENM
[5]   Long-term wind speed and power forecasting using local recurrent neural network models [J].
Barbounis, TG ;
Theocharis, JB ;
Alexiadis, MC ;
Dokopoulos, PS .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006, 21 (01) :273-284
[6]   Practical method for determining the minimum embedding dimension of a scalar time series [J].
Cao, LY .
PHYSICA D, 1997, 110 (1-2) :43-50
[7]  
Clerc M, 1999, P C EV COMP, DOI [10.1109/CEC.1999.785513, DOI 10.1109/CEC.1999.785513]
[8]   One day ahead prediction of wind speed and direction [J].
El-Fouly, Tarek H. M. ;
EI-Saadany, Ehab F. ;
Salama, Magdy M. A. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2008, 23 (01) :191-201
[9]   Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks [J].
Feldkamp, LA ;
Prokhorov, DV ;
Feldkamp, TA .
NEURAL NETWORKS, 2003, 16 (5-6) :683-689
[10]   Wind power forecasting using advanced neural networks models. [J].
Kariniotakis, GN ;
Stavrakakis, GS ;
Nogaret, EF .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 1996, 11 (04) :762-767